New Zealand Blackcurrant Increases Postexercise Hypotension Following Sustained Moderate-Intensity Exercise

Click name to view affiliation

Yusen Shan School of Sport Science, Beijing Sport University, Beijing, BJ, People’s Republic of China

Search for other papers by Yusen Shan in
Current site
Google Scholar
PubMed
Close
and
Matthew David Cook School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom

Search for other papers by Matthew David Cook in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6293-7566 *
Restricted access

Previous observations demonstrate New Zealand blackcurrant (NZBC) extract to alter cardiovascular responses at rest without prior exercise. However, the prolonged effects of NZBC on blood pressure and heart rate variability following exercise are not known. Participants (n15 [five women], age: 31 ± 9 years, maximal oxygen uptake: 44 ± 9 ml·kg−1·min−1) undertook a control condition of 2 hr of lying supine rest. Subsequently, in a double-blind, placebo (PLA)-controlled, randomized crossover design participants completed 1 hr of treadmill exercise at 50% maximal oxygen uptake followed by 2-hr supine rest with blood pressure and heart rate variability measurement following a 7-day intake of NZBC and PLA. With NZBC, there was an increase in average fat oxidation (NZBC: 0.24 ± 0.11 vs. PLA: 0.17 ± 0.11 g/min, p = .005), and larger high-frequency relative power during the exercise (p = .037). In the 2-hr rest period, delta change for systolic pressure was larger with NZBC than PLA (Control vs. NZBC: −5.6 ± 6.4, Control vs. PLA: −3.5 ± 6.0 mmHg, p = .033) but was not different for diastolic or mean arterial pressure. There were no alterations in heart rate variabilities during the 2 hr following the exercise with NZBC. A 7-day intake of NZBC causes a larger postexercise hypotension response in young, physically active men and women following 1 hr of treadmill exercise at 50% maximal oxygen uptake.

Supplementary Materials

    • Supplementary Table S1 (PDF 93 KB)
    • Supplementary Table S2 (PDF 398 KB)
  • Collapse
  • Expand
  • Bae, D., Matthews, J.J.L., Chen, J.J., & Mah, L. (2021). Increased exhalation to inhalation ratio during breathing enhances high-frequency heart rate variability in healthy adults. Psychophysiology, 58(11), Article 13905. https://doi.org/10.1111/psyp.13905

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bailey, S.J., Winyard, P., Vanhatalo, A., Blackwell, J.R., Dimenna, F.J., Wilkerson, D.P., Tarr, J., Benjamin, N., & Jones, A.M. (2009). Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of Applied Physiology, 107(4), 11441155. https://doi.org/10.1152/japplphysiol.00722.2009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bell, D.R., & Gochenaur, K. (2006). Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. Journal of Applied Physiology, 100(4), 11641170. https://doi.org/10.1152/japplphysiol.00626.2005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benn, T., Kim, B., Park, Y.K., Wegner, C.J., Harness, E., Nam, T.G., Kim, D.O., Lee, J.S., & Lee, J.Y. (2014) Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. The Journal of Nutrional Biochemistry, 25(10), 10191025 https://doi.org/10.1016/j.jnutbio.2014.05.008

    • Search Google Scholar
    • Export Citation
  • Braakhuis, A.J., Somerville, V.X., & Hurst, R.D. (2020). The effect of New Zealand blackcurrant on sport performance and related biomarkers: A systematic review and meta-analysis [Erratum in: Journal of the International Society of Sports Nutrition, (2021) Jan 12;18(1):8]. Journal of the International Society of Sports Nutrition, 17(1), Article 25. https://doi.org/10.1186/s12970-020-00354-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carpio-Rivera, E., Moncada-Jimenez, J., Salazar-Rojas, W., & Solera-Herrera, A. (2016) Acute effects of exercise on blood pressure: A meta-analytic investigation. Arquivos Brasileiros de Cardiologia, 106, 422433.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1998). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum Associates.

  • Cook, M.D., Dunne, A., Bosworth, M., & Willems, M.E.T. (2021). Effect of intake duration of Anthocyanin-Rich New Zealand Blackcurrant extract on cardiovascular responses and femoral artery diameter during sustained submaximal isometric contraction. Journal of Dietary Supplements, 11, 113.

    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Blacker, S.D., & Willems, M.E. (2015). New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. European Journal of Applied Physiology, 115(11), 23572365. https://doi.org/10.1007/s00421-015-3215-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Gault, M.L., Edwards, V.C., & Willems, M.E.T. (2017a). Cardiovascular function during supine rest in endurance-trained males with New Zealand blackcurrant: A dose-response study. European Journal of Applied Physiology, 117(2), 247254. https://doi.org/10.1007/s00421-016-3512-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Gault, M.L., Edwards, V.C., & Willems, M.E.T. (2017b). Dose effects of New Zealand blackcurrant on substrate oxidation and physiological responses during prolonged cycling. European Journal of Applied Physiology, 117(6), 12071216. https://doi.org/10.1007/s00421-017-3607-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Gault, M.L., & Willems, M.E.T. (2017). Blackcurrant alters physiological responses and femoral artery diameter during sustained isometric contraction. Nutrients, 9(6), Article 556. https://doi.org/10.3390/nu9060556

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., & Willems, M.E.T. (2019). Dietary anthocyanins: A review of the exercise performance effects and related physiological responses. International Journal of Sports Nutrition and Exercise Metabolism, 29(3), 322330. https://doi.org/10.1123/ijsnem.2018-0088

    • Search Google Scholar
    • Export Citation
  • de Lima Bezerra, Á.D., Costa, E.C., Pacheco, D.A., Souza, D.C., Farias-Junior, L.F., Ritti-Dia, R.M., Grigolo, G.B., de Bittencourt Júnior, P.I.H., Krause, M., & Fayh, A.P.T. (2019). Effect of acute dietary nitrate supplementation on the post-exercise ambulatory blood pressure in obese males: A randomized, controlled, crossover trial. Journal of Sports Science and Medicine, 18(1), 118127.

    • Search Google Scholar
    • Export Citation
  • Fryer, S., Giles, D., Bird, E., Stone, K., Paterson, C., Baláš, J., Willems, M.E.T., Potter, J.A., & Perkins, I.C. (2021). New Zealand blackcurrant extract enhances muscle oxygenation during repeated intermittent forearm muscle contractions in advanced and elite rock climbers. European Journal of Sport Science, 21(9), 12901298. https://doi.org/10.1080/17461391.2020.1827048

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hiles, A.M., Flood, T.R., Lee, B.J., Wheeler, L.E.V., Costello, R., Walker, E.F., Ashdown, K.M., Kuennen, M.R., & Willems, M.E.T. (2020). Dietary supplementation with New Zealand blackcurrant extract enhances fat oxidation during submaximal exercise in the heat. Journal of Science and Medicine in Sport, 23(10), 908912. https://doi.org/10.1016/j.jsams.2020.02.017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huang, L., Trieu, K., Yoshimura, S., Neal, B., Woodward, M., Campbell, N.R.C., Li, Q., Lackland, D.T., Leung, A.A., Anderson, C.A.M., MacGregor, G.A., & He, F.J. (2020). Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. The British Medical Journal, 368, Article m315. https://doi.org/10.1136/bmj.m315

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., & Wallis, G.A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26(Suppl. 1), S28S37. https://doi.org/10.1055/s-2004-830512

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keane, K.M., Bell, P.G., Lodge, J.K., Constantinou, C.L., Jenkinson, S.E., Bass, R., & Howatson, G. (2016). Phytochemical uptake following human consumption of Montmorency tart cherry (L. Prunus cerasus) and influence of phenolic acids on vascular smooth muscle cells in vitro. European Journal of Nutrition, 55(4), 16951705. https://doi.org/10.1007/s00394-015-0988-9

    • Search Google Scholar
    • Export Citation
  • Kuo, C.C., Fattor, J.A., Henderson, G.C., & Brooks, G.A. (2005). Lipid oxidation in fit young adults during postexercise recovery. Journal of Applied Physiology, 99(1), 349356. https://doi.org/10.1152/japplphysiol.00997.2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsumoto, H., Takenami, E., Iwasaki-Kurashige, K., Osada, T., Katsumura, T., & Hamaoka, T. (2005). Effects of blackcurrant anthocyanin intake on peripheral muscle circulation during typing work in humans. European Journal of Applied Physiology, 94(1–2), 3645. https://doi.org/10.1007/s00421-004-1279-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perrier-Melo, R.J., Germano-Soares, A.H., Freitas Brito, A., Vilela Dantas, I., & da Cunha Costa, M. (2021). Post-exercise hypotension in response to high-intensity interval exercise: Potential mechanisms. Revista Portuguesa de Cardiologia, 40(10), 797799. https://doi.org/10.1016/j.repc.2021.05.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pescatello, L.S., Fargo, A.E., Leach, C.N., Jr., & Scherzer, H.H. (1991). Short-term effect of dynamic exercise on arterial blood pressure. Circulation, 83(5), 15571561 https://doi.org/10.1161/01.CIR.83.5.1557

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poole, D.C., & Jones, A.M. (2017). Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. Journal of Applied Physiology, 122(4), 9971002. https://doi.org/10.1152/japplphysiol.01063.2016

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Şahin, M.A., Bilgiç, P., Montanari, S., & Willems, M.E.T. (2021). Intake duration of anthocyanin-rich New Zealand blackcurrant extract affects metabolic responses during moderate intensity walking exercise in adult males. Journal of Dietary Supplements, 18(4), 406417. https://doi.org/10.1080/19390211.2020.1783421

    • Search Google Scholar
    • Export Citation
  • Şahin, M.A., Bilgiç, P., Montanari, S., & Willems, M.E.T. (2022). Daily and not every-other-day intake of anthocyanin-rich New Zealand blackcurrant extract alters substrate oxidation during moderate-intensity walking in adult males. Journal of Dietary Supplements, 19(1), 4961. https://doi.org/10.1080/19390211.2020.1841356

    • Search Google Scholar
    • Export Citation
  • Santhakumar, A.B., Bulmer, A.C., & Singh, I. (2014). A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. Journal of Human Nutrition and Dietetic, 27(1), 121. https://doi.org/10.1111/jhn.12177

    • Search Google Scholar
    • Export Citation
  • Scazzocchio, B., Varì, R., Filesi, C., D’Archivio, M., Santangelo, C., Giovannini, C., Iacovelli, A., Silecchia, G., Li, V.G., Galvano, F., & Masella, R. (2011). Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes, 60(9), 22342244. https://doi.org/10.2337/db10-1461

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shaffer, F., & Ginsberg, J.P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, Article 258. https://doi.org/10.3389/fpubh.2017.00258

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Speciale, A., Cimino, F., Saija, A., Canali, R., Virgili, F. (2014). Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes & Nutrition, 9(4), Article 404. https://doi.org/10.1007/s12263-014-0404-8

    • Search Google Scholar
    • Export Citation
  • Strauss, J.A., Willems, M.E.T., & Shepherd, S.O (2018). New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females. European Journal of Applied Physiology, 118(6), 12651272. https://doi.org/10.1007/s00421-018-3858-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vendrame, S., & Klimis-Zacas, D. (2015). Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogenactivated protein kinase signaling cascades. Nutrition Reviews, 73(6), 348358. https://doi.org/10.1093/nutrit/nuu066

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whelton, P.K., He, J., Appel, L.J., Cutler, J.A., Havas, S., Kotchen, T.A., Roccella, E.J., Stout, R., Vallbona, C., Winston, M.C., Karimbakas, J., & National High Blood Pressure Education Program Coordinating Committee. (2002). Primary prevention of hypertension: Clinical and public health advisory from The National High Blood Pressure Education Program. The Journal of the American Medical Association, 288(15), 18821888. https://doi.org/10.1001/jama.288.15.1882

    • Search Google Scholar
    • Export Citation
  • Willems, M.E.T., Banic, M., Cadden, R., & Barnett, L. (2022). Enhanced walking-induced fat oxidation by New Zealand blackcurrant extract is body composition-dependent in recreationally active adult females. Nutrients. 14(7), Article 1475. https://doi.org/10.3390/nu14071475

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Willems, M.E.T., & Blacker, S.D. (2022) Anthocyanin-rich supplementation: Emerging evidence of strong potential for sport and exercise nutrition. Frontiers in Nutrition, 9, Article 864323. https://doi.org/10.3389/fnut.2022.864323

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Willems, M.E.T., Myers, S.D., Gault, M.L., & Cook, M.D. (2015). Beneficial physiological effects with blackcurrant intake in endurance athletes. International Journal of Sport Nutrition and Exercise Metabolism, 25(4), 367374. https://doi.org/10.1123/ijsnem.2014-0233

    • PubMed
    • Search Google Scholar
    • Export Citation
  • World Medical Association. (2013). World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 21912194. https://doi.org/10.1001/jama.2013.281053

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu, J.W., Ikeda, K., & Yamori, Y. (2004). Cyanidin-3-glucoside regulates phosphorylation of endothelial nitric oxide synthase. FEBS Letters, 574(1–3), 176180. https://doi.org/10.1016/j.febslet.2004.08.027

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhong, H., Xu, J., Yang, M., Hussain, M., Liu, X., Feng, F., & Guan, R. (2023) Protective effect of anthocyanins against neurodegenerative diseases through the microbial-intestinal-brain axis: A critical review. Nutrients, 15(3), Article 496. https://doi.org/10.3390/nu15030496

    • Search Google Scholar
    • Export Citation
  • Ziberna, L., Tramer, F., Moze, S., Vrhovsek, U., Mattivi, F., & Passamonti, S. (2012). Transport and bioactivity of cyanidin 3-glucoside into the vascular endothelium. Free Radical Biology and Medicine, 52(9), 17501759. https://doi.org/10.1016/j.freeradbiomed.2012.02.027

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1630 1630 133
Full Text Views 229 229 49
PDF Downloads 52 52 3