Postexercise Glucose–Fructose Coingestion Augments Cycling Capacity During Short-Term and Overnight Recovery From Exhaustive Exercise, Compared With Isocaloric Glucose

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

During short-term recovery, postexercise glucose–fructose coingestion can accelerate total glycogen repletion and augment recovery of running capacity. It is unknown if this advantage translates to cycling, or to a longer (e.g., overnight) recovery. Using two experiments, the present research investigated if postexercise glucose–fructose coingestion augments exercise capacity following 4-hr (short experiment; n = 8) and 15-hr (overnight experiment; n = 8) recoveries from exhaustive exercise in trained cyclists, compared with isocaloric glucose alone. In each experiment, a glycogen depleting exercise protocol was followed by a 4-hr recovery, with ingestion of 1.5 or 1.2 g·kg−1·hr−1 carbohydrate in the short experiment (double blind) and the overnight experiment (single blind), respectively. Treatments were provided in a randomized order using a crossover design. Four or fifteen hours after the glycogen depletion protocol, participants cycled to exhaustion at 70% Wmax or 65% Wmax in the short experiment and the overnight experiment, respectively. In both experiments there was no difference in substrate oxidation or blood glucose and lactate concentrations between treatments during the exercise capacity test (trial effect, p > .05). Nevertheless, cycling capacity was greater in glucose + fructose versus glucose only in the short experiment (28.0 ± 8.4 vs. 22.8 ± 7.3 min, d = 0.65, p = .039) and the overnight experiment (35.9 ± 10.7 vs. 30.6 ± 9.2 min, d = 0.53, p = .026). This is the first study to demonstrate that postexercise glucose–fructose coingestion enhances cycling capacity following short-term (4 hr) and overnight (15 hr) recovery durations. Therefore, if multistage endurance athletes are ingesting glucose for rapid postexercise recovery then fructose containing carbohydrates may be advisable.

The authors are with the Department for Health, University of Bath, Bath, Somerset, United Kingdom. E.A. Gray and T.A. Green contributed equally to this work.

Gonzalez (J.T.Gonzalez@bath.ac.uk) is corresponding author.
  • Alghannam, A.F., Jedrzejewski, D., Tweddle, M.G., Gribble, H., Bilzon, J., Thompson, D., . . . Betts, J.A. (2016). Impact of muscle glycogen availability on the capacity for repeated exercise in man. Medicine & Science in Sports & Exercise, 48, 123–131. PubMed ID: 26197030 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alghannam, A.F., Tsintzas, K., Thompson, D., Bilzon, J., & Betts, J.A. (2014). Exploring mechanisms of fatigue during repeated exercise and the dose dependent effects of carbohydrate and protein ingestion: Study protocol for a randomised controlled trial. Trials, 15, 12. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergstrom, J., Hermansen, L., Hultman, E., & Saltin, B. (1967). Diet muscle glycogen and physical performance. Acta Physiologica Scandinavica, 71, 140–150. PubMed ID: 5584523 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, J.A., & Thompson, D. (2012). Thinking outside the bag (not necessarily outside the lab). Medicine & Science in Sports & Exercise, 44, 2040–2040. PubMed ID: 22986475 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, J.A., & Williams, C. (2010). Short-term recovery from prolonged exercise exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements. Sports Medicine, 40, 941–959. PubMed ID: 20942510 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M., Hawley, J.A., Wong, S.H.S., & Jeukendrup, A.E. (2011). Carbohydrates for training and competition. Journal of Sports Sciences, 29, S17–S27. PubMed ID: 21660838 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casey, A., Mann, R., Banister, K., Fox, J., Morris, P.G., MacDonald, I.A., & Greenhaff, P.L. (2000). Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by C-13 MRS. American Journal of Physiology—Endocrinology and Metabolism, 278, E65–E75. PubMed ID: 10644538 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coyle, E.F., & Coggan, A.R. (1984). Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sports Medicine, 1, 446–458. PubMed ID: 6390613 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coyle, E.F., Coggan, A.R., Hemmert, M.K., & Ivy, J.L. (1986). Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. Journal of Applied Physiology, 61, 165–172. PubMed ID: 3525502 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Currell, K., & Jeukendrup, A.E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine, 38, 297–316. PubMed ID: 18348590 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decombaz, J., Jentjens, R., Ith, M., Scheurer, E., Buehler, T., Jeukendrup, A., & Boesch, C. (2011). Fructose and Galactose enhance postexercise human liver glycogen synthesis. Medicine & Science in Sports & Exercise, 43, 1964–1971. PubMed ID: 21407126 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, C.J., Gonzalez, J.T., Beelen, M., Cermak, N.M., Smith, F.E., Thelwall, P.E., . . . van Loon, L.J.C. (2016). Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. Journal of Applied Physiology, 120, 1328–1334. PubMed ID: 27013608 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, C.J., Gonzalez, J.T., & van Loon, L.J.C. (2019). Fructose co-ingestion to increase carbohydrate availability in athletes. The Journal of Physiology, 597(14), 3549–3560. PubMed ID: 31166604

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, J.T., & Betts, J.A. (2018). Dietary sugars, exercise and hepatic carbohydrate metabolism. Proceedings of the Nutrition Society, 78, 246–256. PubMed ID: 30348238 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, G.M., & Ingelfinger, F.J. (1966). Intestinal absorption of sucrose in man—interrelation of hydrolysis and monosaccharide product absorption. Journal of Clinical Investigation, 45, 388–398. PubMed ID: 5904556 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawley, J.A., Dennis, S.C., Laidler, B.J., Bosch, A.N., Noakes, T.D., & Brouns, F. (1991). High-rates of exogenous carbohydrate oxidation from starch ingested during prolonged exercise. Journal of Applied Physiology, 71, 1801–1806. PubMed ID: 1761477 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howlett, K., Galbo, H., Lorentsen, J., Bergeron, R., Zimmerman-Belsing, T., Bulow, J., . . . Kjaer, M. (1999). Effect of adrenaline on glucose kinetics during exercise in adrenalectomised humans. Journal of Physiology, 519, 911–921. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J., Rustad, P.I., Kolnes, A.J., & Lai, Y.C. (2011). The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Frontiers in Physiology, 2, 11. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jentjens, R., Achten, J., & Jeukendrup, A.E. (2004). High oxidation rates from combined carbohydrates ingested during exercise. Medicine & Science in Sports & Exercise, 36, 1551–1558. PubMed ID: 15354037 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jentjens, R., & Jeukendrup, A.E. (2005). High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. British Journal of Nutrition, 93, 485–492. PubMed ID: 15946410 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E. (2004). Carbohydrate intake during exercise and performance. Nutrition, 20, 669–677. PubMed ID: 15212750 doi:

  • Jeukendrup, A.E., & Wallis, G.A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26, S28–S37. PubMed ID: 15702454 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Julian, R., Hecksteden, A., Fullagar, H.H.K., & Meyer, T. (2017). The effects of menstrual cycle phase on physical performance in female soccer players. PLoS One, 12, e0173951. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A.J., O’Hara, J.P., Morrison, D.J., Preston, T., & King, R. (2018). Carbohydrate dose influences liver and muscle glycogen oxidation and performance during prolonged exercise. Physiological Reports, 6, 17. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kreisman, S.H., Manzon, A., Nessim, S.J., Morais, J.A., Gougeon, R., Fisher, S.J., . . . Marliss, E.B. (2000). Glucoregulatory responses to intense exercise performed in the postprandial state. American Journal of Physiology—Endocrinology and Metabolism, 278, E786–E793. PubMed ID: 10780933 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marliss, E.B., Simantirakis, E., Miles, P.D.G., Hunt, R., Gougeon, R., Purdon, C., . . . Vranic, M. (1992). Glucose-turnover and its regulation during intense exercise and recovery in normal-male subjects. Clinical and Investigative Medicine, 15, 406–419. PubMed ID: 1458713

    • Search Google Scholar
    • Export Citation
  • Marquet, L.A., Brisswalter, J., Louis, J., Tiollier, E., Burke, L.M., Hawley, J.A., & Hausswirth, C. (2016). Enhanced endurance performance by periodization of carbohydrate intake: “Sleep Low” strategy. Medicine & Science in Sports & Exercise, 48, 663–672. PubMed ID: 26741119 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maunder, E., Podlogar, T., & Wallis, G.A. (2018). Postexercise fructose-maltodextrin ingestion enhances subsequent endurance capacity. Medicine & Science in Sports & Exercise, 50, 1039–1045. PubMed ID: 29232314 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noakes, T.D. (2004). Linear relationship between the perception of effort and the duration of constant load exercise that remains. Journal of Applied Physiology, 96, 1571–1572. PubMed ID: 15016797 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, W.J., & Rowlands, D.S. (2011). Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. American Journal of Physiology—Gastrointestinal and Liver Physiology, 300, G181–G189. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H.P., Wiersma, J.W., Koerselman, J., Akkermans, L.M., Bol, E., Mosterd, W.L., & de Vries, W.R. (2000). The effect of a sports drink on gastroesophageal reflux during a run-bike-run test. International Journal of Sports Medicine, 21, 65–70. PubMed ID: 10683102 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roden, M., Petersen, K.F., & Shulman, G.I. (2001). Nuclear magnetic resonance studies of hepatic glucose metabolism in humans. Recent Progress in Hormone Research, 56, 219–237. PubMed ID: 11237214 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romijn, J.A., Coyle, E.F., Sidossis, L.S., Gastaldelli, A., Horowitz, J.F., Endert, E., & Wolfe, R.R. (1993). Regulation of endogenous fat and carbohydrate-metabolism in relation to exercise intensity and duration. American Journal of Physiology, 265, E380–E391. PubMed ID: 8214047

    • Search Google Scholar
    • Export Citation
  • Rowlands, D.S., Swift, M., Ros, M., & Green, J.G. (2012). Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Applied Physiology Nutrition and Metabolism, 37, 425–436. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigal, R.J., Fisher, S., Halter, J.B., Vranic, M., & Marliss, E.B. (1996). The roles of catecholamines in glucoregulation in intense exercise as defined by the islet cell clamp technique. Diabetes, 45, 148–156. PubMed ID: 8549858 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, R., Magnusson, I., Rothman, D.L., Cline, G.W., Caumo, A., Cobelli, C., & Shulman, G.I. (1996). Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. Journal of Clinical Investigation, 97, 126–132. PubMed ID: 8550823 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsintzas, K., & Williams, C. (1998). Human muscle glycogen metabolism during exercise—effect of carbohydrate supplementation. Sports Medicine, 25, 7–23. PubMed ID: 9458524 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsintzas, K., Williams, C., Constantin-Teodosiu, D., Hultman, E., Boobis, L., Clarys, P., & Greenhaff, P. (2001). Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: Effect of carbohydrate ingestion. Journal of Physiology, 537, 305–311. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallis, G.A., Hulston, C.J., Mann, C.H., Roper, H.P., Tipton, K.D., & Jeukendrup, A.E. (2008). Postexercise muscle glycogen synthesis with combined glucose and fructose ingestion. Medicine & Science in Sports & Exercise, 40, 1789–1794. PubMed ID: 18799989 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 836 836 836
Full Text Views 53 53 53
PDF Downloads 40 40 40