Impaired Insulin Profiles Following a Single Night of Sleep Restriction: The Impact of Acute Sprint Interval Exercise

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Experimental sleep restriction (SR) has demonstrated reduced insulin sensitivity in healthy individuals. Exercise is well-known to be beneficial for metabolic health. A single bout of exercise has the capacity to increase insulin sensitivity for up to 2 days. Therefore, the current study aimed to determine if sprint interval exercise could attenuate the impairment in insulin sensitivity after one night of SR in healthy males. Nineteen males were recruited for this randomized crossover study which consisted of four conditions—control, SR, control plus exercise, and sleep restriction plus exercise. Time in bed was 8 hr (2300–0700) in the control conditions and 4 hr (0300–0700) in the SR conditions. Conditions were separated by a 1-week entraining period. Participants slept at home, and compliance was assessed using wrist actigraphy. Following the night of experimental sleep, participants either conducted sprint interval exercise or rested for the equivalent duration. An oral glucose tolerance test was then conducted. Blood samples were obtained at regular intervals for measurement of glucose and insulin. Insulin concentrations were higher in SR than control (p = .022). Late-phase insulin area under the curve was significantly lower in sleep restriction plus exercise than SR (862 ± 589 and 1,267 ± 558; p = .004). Glucose area under the curve was not different between conditions (p = .207). These findings suggest that exercise improves the late postprandial response following a single night of SR.

Sweeney, Peart, Kyza, Harkes, and Walshe are with the Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom. Ellis is with Northumbria Sleep Research Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom.

Sweeney (emma.sweeney@northumbria.ac.uk) is corresponding author.
  • Breen, L., Philp, A., Shaw, C.S., Jeukendrup, A.E., Baar, K., & Tipton, K.D. (2011). Beneficial effects of resistance exercise on glycemic control are not further improved by protein ingestion. PLoS One, 6(6), e20613. PubMed ID: 21701685 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broussard, J.L., Ehrmann, D.A., Van Cauter, E., Tasali, E., & Brady, M.J. (2012). Impaired insulin signaling in human adipocytes after experimental sleep restriction: A randomized, crossover study. Annals of Internal Medicine, 157(8), 549–557. PubMed ID: 23070488 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buysse, D.J., Reynolds, C.F., 3rd, Monk, T.H., Berman, S.R., & Kupfer, D.J. (1989). The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213. PubMed ID: 2748771 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, S.K., Ang, J.E., Revell, V.L., Holmes, B., Mann, A., Robertson, F.P., . . . Skene, D.J. (2014). Effect of sleep deprivation on the human metabolome. Proceedings of the National Academy of Sciences, 111(29), 10761. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Souza, J.F.T., Dattilo, M., de Mello, M.T., Tufik, S., & Antunes, H.K.M. (2017). High-intensity interval training attenuates insulin resistance induced by sleep deprivation in healthy males. Frontiers in Physiology, 8, 992. PubMed ID: 29270126 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Prato, S., Marchetti, P., & Bonadonna, R.C. (2002). Phasic insulin release and metabolic regulation in type 2 diabetes. Diabetes, 51(Suppl 1), S109–S116. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donga, E., van Dijk, M., van Dijk, J.G., Biermasz, N.R., Lammers, G.J., van Kralingen, K.W., . . . Romijn, J.A. (2010). A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. The Journal of Clinical Endocrinology and Metabolism, 95(6), 2963–2968. PubMed ID: 20371664 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. PubMed ID: 17695343 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillen, J.B., Little, J.P., Punthakee, Z., Tarnopolsky, M.A., Riddell, M.C., & Gibala, M.J. (2012). Acute high-intensity interval exercise reduces the postprandial glucose response and prevalence of hyperglycaemia in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 14(6), 575–577. PubMed ID: 22268455 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirshkowitz, M., Whiton, K., Albert, S.M., Alessi, C., Bruni, O., DonCarlos, L., . . . Adams Hillard, P.J. (2015). National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health: Journal of the National Sleep Foundation, 1(1), 40–43. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horne, J.A., & Ostberg, O. (1976). A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International Journal of Chronobiology, 4(2), 97–110. PubMed ID: 1027738

    • Search Google Scholar
    • Export Citation
  • Knutson, K.L., Spiegel, K., Penev, P., & Van Cauter, E. (2007). The metabolic consequences of sleep deprivation. Sleep Medicine Reviews, 11(3), 163–178. PubMed ID: 17442599 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koopman, R., Manders, R.J., Zorenc, A.H., Hul, G.B., Kuipers, H., Keizer, H.A., & van Loon, L.J. (2005). A single session of resistance exercise enhances insulin sensitivity for at least 24 h in healthy men. European Journal of Applied Physiology, 94(1–2), 180–187. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leiper, J.B., Broad, N.P., & Maughan, R.J. (2001). Effect of intermittent high-intensity exercise on gastric emptying in man. Medicine & Science in Sports & Exercise, 33(8), 1270–1278. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenzo, C., Williams, K., & Haffner, S.M. (2012). Insulin secretion based on the late oral glucose tolerance test period and incident diabetes: The San Antonio Heart Study. Diabetic Medicine: A Journal of the British Diabetic Association, 29(8), e151–e158. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marliss, E.B., Simantirakis, E., Miles, P.D., Hunt, R., Gougeon, R., Purdon, C., . . . Vranic, M. (1992). Glucose turnover and its regulation during intense exercise and recovery in normal male subjects. Clinical and Investigative Medicine, 15(5), 406–419. PubMed ID: 1458713

    • Search Google Scholar
    • Export Citation
  • Matsuda, M., & DeFronzo, R.A. (1999). Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care, 22(9), 1462. PubMed ID: 10480510 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., & Turner, R.C. (1985). Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–419. PubMed ID: 3899825 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, J.F., Fernández-Elías, V.E., Hamouti, N., Pallares, J.G., & Mora-Rodriguez, R. (2015). Higher insulin-sensitizing response after sprint interval compared to continuous exercise. International Journal of Sports Medicine, 36(03), 209–214.

    • Search Google Scholar
    • Export Citation
  • Rao, M. N., Neylan, T.C., Grunfeld, C., Mulligan, K., Schambelan, M., & Schwarz, J.-M. (2015). Subchronic sleep restriction causes tissue-specific insulin resistance. The Journal of Clinical Endocrinology and Metabolism, 100(4), 1664–1671. PubMed ID: 25658017 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rynders, C.A., Weltman, J.Y., Jiang, B., Breton, M., Patrie, J., Barrett, E.J., & Weltman, A. (2014). Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. The Journal of Clinical Endocrinology & Metabolism, 99(1), 220–228. PubMed ID: 24243632 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saner, N.J., Bishop, D.J., & Bartlett, J.D. (2018). Is exercise a viable therapeutic intervention to mitigate mitochondrial dysfunction and insulin resistance induced by sleep loss? Sleep Medicine Reviews, 37, 60–68. PubMed ID: 29056415 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sweeney, E.L., Jeromson, S., Hamilton, D.L., Brooks, N.E., & Walshe, I.H. (2017). Skeletal muscle insulin signaling and whole-body glucose metabolism following acute sleep restriction in healthy males. Physiological Reports, 5(23), e13498. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Leeuwen, W.M.A., Hublin, C., Sallinen, M., Härmä, M., Hirvonen, A., & Porkka-Heiskanen, T. (2010). Prolonged sleep restriction affects glucose metabolism in healthy young men. International Journal of Endocrinology, 2010, 108641. PubMed ID: 20414467 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Greer, J., Porter, R.R., Kaur, K., & Youngstedt, S.D. (2016). Short-term moderate sleep restriction decreases insulin sensitivity in young healthy adults. Sleep Health in Early Care and Education, 2(1), 63–68. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wojtaszewski, J.F., & Richter, E.A. (2006). Effects of acute exercise and training on insulin action and sensitivity: Focus on molecular mechanisms in muscle. Essays in Biochemistry, 42, 31–46. PubMed ID: 17144878 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaggi, H.K., Araujo, A.B., & McKinlay, J.B. (2006). Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care, 29(3), 657. PubMed ID: 16505522 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 513 513 135
Full Text Views 36 36 9
PDF Downloads 11 11 2