Increased Fat Oxidation During Arm Cycling Exercise in Adult Men With Spinal Cord Injury Compared With Noninjured Controls

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
  • | 2 GENUD-Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
  • | 3 CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
  • | 4 Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Vitoria, Spain
  • | 5 Universidad de Castilla-La Mancha, Toledo, Spain
  • | 6 Department of Physical Medicine and Rehabilitation, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain, Toledo, Spain
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

People with spinal cord injury (SCI) tend to be more sedentary and increase fat accumulation, which could have a negative influence on metabolic flexibility. The aim of this study was to investigate the capacity to oxidize fat in a homogenous sample of men with thoracic SCI compared with healthy noninjured men during an arm cycling incremental test. Forty-one men, 21 with SCI and 20 noninjured controls, performed an incremental arm cycling test to determine peak fat oxidation (PFO) and the intensity of exercise that elicits PFO (Fatmax). PFO was expressed in absolute values (g/min) and relative to whole-body and upper-body lean mass ([mg·min−1]·kg−1) through three different models (adjusting by cardiorespiratory fitness and fat mass). Gross mechanical efficiency was also calculated. PFO was higher in SCI than in noninjured men (0.27 ± 0.07 vs. 0.17 ± 0.07 g/min; 5.39 ± 1.30 vs. 3.29 ± 1.31 [mg·min−1]·kg−1 whole-body lean mass; 8.28 ± 2.11 vs. 5.08 ± 2.12 [mg·min−1]·kg−1 upper-body lean mass). Fatmax was found at a significantly higher percentage of VO2peak in men with SCI (33.6% ± 8.2% vs. 23.6% ± 6.4%). Differences persisted and even increased in the fully adjustment model and at any intensity. Men with SCI showed significantly higher gross mechanical efficiency at 35 and 65 W than the noninjured group. Men with SCI showed higher fat oxidation when compared with noninjured men at any intensity, even increased after full adjustment for lean mass, fat mass, and cardiorespiratory fitness. These findings suggest that SCI men could improve their metabolic flexibility and muscle mass for greater efficiency, not being affected by their fat accumulation.

Rodríguez-Gómez (irene.rodriguez@uclm.es) is corresponding author, https://orcid.org/0000-0002-1622-7109

Supplementary Materials

    • Supplementary Figure S1 (pdf 101 KB)
    • Supplementary Figure S2 (pdf 169 KB)
    • Supplementary Table S1 (pdf 221 KB)
    • Supplementary Table S2 (pdf 221 KB)
    • Supplementary Table S3 (pdf 221 KB)
    • Supplementary Table S4 (pdf 221 KB)
    • Supplementary Table S5 (pdf 218 KB)
    • Supplementary Table S6 (pdf 218 KB)
  • Achten, J., Gleeson, M., & Jeukendrup, A.E. (2002). Determination of the exercise intensity that elicits maximal fat oxidation. Medicine & Science in Sports & Exercise, 34(1), 9297. https://doi.org/10.1097/00005768-200201000-00015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksnes, A.K., Hjeltnes, N., Wahlström, E.O., Katz, A., Zierath, J.R., & Wallberg-Henriksson, H. (1996). Intact glucose transport in morphologically altered denervated skeletal muscle from quadriplegic patients. American Journal of Physiology, 271(3, Pt. 1), E593600. https://doi.org/10.1152/ajpendo.1996.271.3.E593

    • Search Google Scholar
    • Export Citation
  • Amaro-Gahete, F.J., Sanchez-Delgado, G., Alcantara, J.M., Martinez-Tellez, B., Acosta, F.M., Helge, J.W., & Ruiz, J.R. (2019a). Impact of data analysis methods for maximal fat oxidation estimation during exercise in sedentary adults: Data analysis maximal fat oxidation. European Journal of Sport Science, 19(9), 12301239. https://doi.org/10.1080/17461391.2019.1595160

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaro-Gahete, F.J., Sanchez-Delgado, G., Ara, I., & Jonatan, R.R. (2019b). Cardiorespiratory fitness may influence metabolic inflexibility during exercise in obese persons. The Journal of Clinical Endocrinology & Metabolism, 104(12), 57805790. https://doi.org/10.1210/jc.2019-01225

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaro-Gahete, F.J., Sanchez-Delgado, G., Helge, J.W., & Ruiz, J.R. (2019c). Optimizing maximal fat oxidation assessment by a treadmill-based graded exercise protocol: When should the test end? Frontiers in Physiology, 10, 909. https://doi.org/10.3389/fphys.2019.00909

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ara, I., Larsen, S., Stallknecht, B., Guerra, B., Morales-Alamo, D., Andersen, J., Ponce-Gonzalez, J., Guadalupe-Grau, A., Galbo, H., & Calbet, J. (2011). Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. International Journal of Obesity, 35(1), 99108. https://doi.org/10.1038/ijo.2010.123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Astorino, T.A., & Harness, E.T. (2009). Substrate metabolism during exercise in the spinal cord injured. European Journal of Applied Physiology, 106(2), 187193. https://doi.org/10.1007/s00421-009-1005-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauman, W.A., Spungen, A.M., Wang, J., & Pierson, R.N., Jr. (2004). The relationship between energy expenditure and lean tissue in monozygotic twins discordant for spinal cord injury. Journal of Rehabilitation Research & Development, 41(1), 18. https://doi.org/10.1682/jrrd.2004.01.0001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, L.A., Lamb, J.L., Atkinson, E.J., Wuermser, L.A., & Amin, S. (2014). Body composition of women and men with complete motor paraplegia. The Journal of Spinal Cord Medicine, 37(4), 359365. https://doi.org/10.1179/2045772313Y.0000000151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowan, R.E., Nash, M.S., & Anderson, K.D. (2013). Exercise participation barrier prevalence and association with exercise participation status in individuals with spinal cord injury. Spinal Cord, 51(1), 2732. https://doi.org/10.1038/sc.2012.53

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dallmeijer, A., Hopman, M., Van As, H., & Van der Woude, L. (1996). Physical capacity and physical strain in persons with tetraplegia; The role of sport activity. Spinal Cord, 34(12), 729735. https://doi.org/10.1038/sc.1996.133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernhall, B., Heffernan, K., Jae, S.Y., & Hedrick, B. (2008). Health implications of physical activity in individuals with spinal cord injury: A literature review. Journal of Health and Human Services Administration, 30(4), 468502.

    • Search Google Scholar
    • Export Citation
  • Frayn, K. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology, 55(2), 628634. https://doi.org/10.1152/jappl.1983.55.2.628

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes, T., Ara, I., Guadalupe‐Grau, A., Larsen, S., Stallknecht, B., Olmedillas, H., Santana, A., Helge, J., Calbet, J., & Guerra, B. (2010). Leptin receptor 170 kDa (OB‐R170) protein expression is reduced in obese human skeletal muscle: A potential mechanism of leptin resistance. Experimental Physiology, 95(1), 160171. https://doi.org/10.1113/expphysiol.2009.049270

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haisma, J., Van der Woude, L., Stam, H., Bergen, M., Sluis, T., & Bussmann, J. (2006). Physical capacity in wheelchair-dependent persons with a spinal cord injury: A critical review of the literature. Spinal Cord, 44(11), 642652. https://doi.org/10.1038/sj.sc.3101915

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ipavec-Levasseur, S., Croci, I., Choquette, S., Byrne, N.M., Cowin, G., O’Moore-Sullivan, T.M., Prins, J.B., & Hickman, I.J. (2015). Effect of 1-h moderate-intensity aerobic exercise on intramyocellular lipids in obese men before and after a lifestyle intervention. Applied Physiology, Nutrition and Metabolism, 40(12), 12621268. https://doi.org/10.1139/apnm-2015-0258

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, K.A., Burns, P., Kressler, J., & Nash, M.S. (2013). Heavy reliance on carbohydrate across a wide range of exercise intensities during voluntary arm ergometry in persons with paraplegia. The Journal of Spinal Cord Medicine, 36(5), 427435. https://doi.org/10.1179/2045772313Y.0000000123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., & Wallis, G.A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26(Suppl. 1), S28S37. https://doi.org/10.1055/s-2004-830512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, D.E., Goodpaster, B., Wing, R.R., & Simoneau, J.-A. (1999). Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. American Journal of Physiology-Endocrinology and Metabolism, 277(6), E1130E1141. https://doi.org/10.1152/ajpendo.1999.277.6.E1130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-Y., Hickner, R.C., Cortright, R.L., Dohm, G.L., & Houmard, J.A. (2000). Lipid oxidation is reduced in obese human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 279(5), E1039E1044. https://doi.org/10.1152/ajpendo.2000.279.5.E1039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knechtle, B., Müller, G., & Knecht, H. (2004). Optimal exercise intensities for fat metabolism in handbike cycling and cycling. Spinal Cord, 42(10), 564572. https://doi.org/10.1038/sj.sc.3101612

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knechtle, B., Müller, G., Willmann, F., Eser, P., & Knecht, H. (2003). Comparison of fat oxidation in arm cranking in spinal cord-injured people versus ergometry in cyclists. European Journal of Applied Physiology, 90(5–6), 614619. https://doi.org/10.1007/s00421-003-0920-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knechtle, B., Müller, G., Willmann, F., Eser, P., & Knecht, H. (2004). Fat oxidation at different intensities in wheelchair racing. Spinal Cord, 42(1), 2428. https://doi.org/10.1038/sj.sc.3101548

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocina, P. (1997). Body composition of spinal cord injured adults. Sports Medicine, 23(1), 4860. https://doi.org/10.2165/00007256-199723010-00005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kressler, J., Jacobs, K., Burns, P., Betancourt, L., & Nash, M.S. (2014). Effects of circuit resistance training and timely protein supplementation on exercise-induced fat oxidation in tetraplegic adults. Topics in Spinal Cord Injury Rehabilitation, 20(2), 113122. https://doi.org/10.1310/sci2002-113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima-Silva, A.E., Bertuzzi, R.C., Pires, F.O., Gagliardi, J.F., Barros, R.V., Hammond, J., & Kiss, M.A. (2010). Relationship between training status and maximal fat oxidation rate. Journal of Sports Science & Medicine, 9(1), 31.

    • Search Google Scholar
    • Export Citation
  • Liou, T.H., Pi-Sunyer, F.X., & Laferrère, B. (2005). Physical disability and obesity. Nutrition Reviews, 63(10), 321331. https://doi.org/10.1111/j.1753-4887.2005.tb00110.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, M., Bertoli, S., Margonato, V., Merati, G., Veicsteinas, A., & Testolin, G. (2003). Body composition assessment in spinal cord injury subjects. Acta Diabetologica, 40(1), s183s186. https://doi.org/10.1007/s00592-003-0061-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín-García, M., Vila-Maldonado, S., Rodríguez-Gómez, I., Faya, F.M., Plaza-Carmona, M., Pastor-Vicedo, J.C., & Ara, I. (2016). The Spanish version of the Three Factor Eating Questionnaire-R21 for children and adolescents (TFEQ-R21C): Psychometric analysis and relationships with body composition and fitness variables. Physiology & Behavior, 165, 350357. https://doi.org/10.1016/j.physbeh.2016.08.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maunder, E., Plews, D.J., & Kilding, A.E. (2018). Contextualising maximal fat oxidation during exercise: Determinants and normative values. Frontiers in Physiology, 9, 599. https://doi.org/10.3389/fphys.2018.00599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, J.G., Edwards, W.B., Prasad, A., Troy, K.L., Griffith, J.W., & Schnitzer, T.J. (2014). Dual energy X-ray absorptiometry of the knee in spinal cord injury: Methodology and correlation with quantitative computed tomography. Spinal Cord, 52(11), 821825. https://doi.org/10.1038/sc.2014.122

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Midha, M., Schmitt, J.K., & Sclater, M. (1999). Exercise effect with the wheelchair aerobic fitness trainer on conditioning and metabolic function in disabled persons: A pilot study. Archives of Physical Medicine and Rehabilitation, 80(3), 258261. https://doi.org/10.1016/S0003-9993(99)90135-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordby, P., Saltin, B., & Helge, J. (2006). Whole‐body fat oxidation determined by graded exercise and indirect calorimetry: A role for muscle oxidative capacity? Scandinavian Journal of Medicine & Science in Sports, 16(3), 209214. https://doi.org/10.1111/j.1600-0838.2005.00480.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Gómez, I., Martín-García, M., García-Cuartero, B., González-Vergaz, A., Carcavilla, A., Aragonés, Á., Alegre, L.M., & Ara, I. (2020). Body composition as a mediator between cardiorespiratory fitness and bone mass during growth. Medicine & Science in Sports & Exercise, 52(2), 498506. https://doi.org/10.1249/mss.0000000000002146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Gómez, I., Martín-Manjarrés, S., Martín-García, M., Vila-Maldonado, S., Gil-Agudo, Á., Alegre, L.M., & Ara, I. (2019). Cardiorespiratory fitness and arm bone mineral health in young males with spinal cord injury: The mediator role of lean mass. Journal of Sports Sciences, 37(7), 717725. https://doi.org/10.1080/02640414.2018.1522948

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltin, B., & Gollnick, P.D. (2010). Skeletal muscle adaptability: Significance for metabolism and performance. Comprehensive physiology, 555631.

    • Search Google Scholar
    • Export Citation
  • Santalla, A., Naranjo, J., & Terrados, N. (2009). Muscle efficiency improves over time in world-class cyclists. Medicine & Science in Sports & Exercise, 41(5), 10961101. https://doi.org/10.1249/MSS.0b013e318191c802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schantz, P., Sjöberg, B., Widebeck, A.M., & Ekblom, B. (1997). Skeletal muscle of trained and untrained paraplegics and tetraplegics. Acta Physiologica Scandinavica, 161(1), 3139. https://doi.org/10.1046/j.1365-201X.1997.201371000.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D.A., Sedlock, D.A., Gass, E., & Gass, G. (1999). VO2peak and the gas-exchange anaerobic threshold during incremental arm cranking in able-bodied and paraplegic men. European Journal of Applied Physiology and Occupational Physiology, 80(4), 292297. https://doi.org/10.1007/s004210050595

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simoneau, J.A., Veerkamp, J.H., Turcotte, L.P., & Kelley, D.E. (1999). Markers of capacity to utilize fatty acids in human skeletal muscle: Relation to insulin resistance and obesity and effects of weight loss. The FASEB Journal, 13(14), 20512060. https://doi.org/10.1096/fasebj.13.14.2051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spungen, A.M., Adkins, R.H., Stewart, C.A., Wang, J., Pierson, R.N., Jr., Waters, R.L., & Bauman, W.A. (2003). Factors influencing body composition in persons with spinal cord injury: A cross-sectional study. Journal of Applied Physiology, 95(6), 23982407. https://doi.org/10.1152/japplphysiol.00729.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thyfault, J.P., Kraus, R.M., Hickner, R.C., Howell, A.W., Wolfe, R.R., & Dohm, G.L. (2004). Impaired plasma fatty acid oxidation in extremely obese women. American Journal of Physiology-Endocrinology and Metabolism, 287(6), E1076E1081. https://doi.org/10.1152/ajpendo.00177.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Medical Association. (2013). World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 21912194. https://doi.org/10.1001/jama.2013.281053

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 435 435 159
Full Text Views 43 43 10
PDF Downloads 45 45 14