Combination of Aerobic Training and Cocoa Flavanols as Effective Therapies to Reduce Metabolic and Inflammatory Disruptions in Insulin-Resistant Rats: The Exercise, Cocoa, and Diabetes Study

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Department of Physical Education, Exercise Physiology Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
  • | 2 ImaginAb, Inglewood, CA, USA
  • | 3 Departament of Morphology, Cellular Biology Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
  • | 4 Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels, Belgium
  • | 5 Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, Institut Universitaire de France (IUF), Lille, France
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

We aimed to investigate the combined effects of aerobic exercise (EXE) and cocoa flavanol (COCOA) supplementation on performance, metabolic parameters, and inflammatory and lipid profiles in obese insulin-resistant rats. Therefore, 32 male Wistar rats (230–250 g) were fed a high-fat diet and a fructose-rich beverage for 30 days to induce insulin resistance. Next, the rats were randomized into four groups, orally administered placebo solution or COCOA supplementation (45 mg·kg−1), and either remained sedentary or were subjected to EXE on a treadmill at 60% peak velocity for 30 min, for 8 weeks. Blood samples and peripheral tissues were collected and processed to analyze metabolic and inflammatory parameters, lipid profiles, and morphological parameters. Supplementation with COCOA and EXE improved physical performance and attenuated body mass gain, adipose index, and adipocyte area. When analyzed as individual interventions, supplementation with COCOA and EXE improved glucose intolerance and the lipid profile reduced the concentrations of leptin, glucose, and insulin, and reduced homeostasis assessment index (all effects were p < .001 for both interventions), while ameliorated some inflammatory mediators in examined tissues. In skeletal muscles, both COCOA supplementation and EXE increased the expression of glucose transporter (p < .001 and p < .001), and combined intervention showed additive effects (p < .001 vs. COCOA alone or EXE alone). Thus, combining COCOA with EXE represents an effective nonpharmacological strategy to treat insulin resistance; it could prevent Type 2 diabetes mellitus by improving physical performance, glucose metabolism, neuroendocrine control, and lipid and inflammatory mediators in the liver, pancreas, adipose tissue, and skeletal muscle in obese male insulin-resistant rats.

Soares (danusa56@gmail.com) is corresponding author, https://orcid.org/0000-0002-5705-8890.

Supplementary Materials

    • Supplementary Figure S1 (pdf 261 KB)
    • Supplementary Figure S2 (pdf 337 KB)
    • Supplementary Table S1 (pdf 338 KB)
  • Abella, V., Scotece, M., Conde, J., Pino, J., Gonzalez-Gay, M.A., Gómez-Reino, J.J., Mera, A., Lago, F., Gómez, R., & Gualillo, O. (2017). Leptin in the interplay of inflammation, metabolism and immune system disorders. Nature Reviews. Rheumatology, 13(2), 100109. https://doi.org/10.1038/NRRHEUM.2016.209

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abràmoff, M.D., Magalhães, P.J., & Ram, S.J. (2004). Image processing with ImageJ. Biophotonics International, 11(7), 3642.

  • Colberg, S.R., Sigal, R.J., Yardley, J.E., Riddell, M.C., Dunstan, D.W., Dempsey, P.C., Horton, E.S., Castorino, K., & Tate, D.F. (2016). Physical activity/exercise and diabetes: A position statement of the American diabetes association. Diabetes Care, 39(11), 20652079. https://doi.org/10.2337/DC16-1728

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coronado-Cáceres, L.J., Rabadán-Chávez, G., Quevedo-Corona, L., Hernández-Ledesma, B., Garcia, A.M., Mojica, L., & Lugo-Cervantes, E. (2019). Anti-obesity effect of cocoa proteins (Theobroma cacao L.) variety “Criollo” and the expression of genes related to the dysfunction of white adipose tissue in high-fat diet-induced obese rats. Journal of Functional Foods, 62, Article 103519. https://doi.org/10.1016/J.JFF.2019.103519

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition, 5, Article 87. https://doi.org/10.3389/FNUT.2018.00087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curran, M., Drayson, M.T., Andrews, R.C., Zoppi, C., Barlow, J.P., Solomon, T.P.J., & Narendran, P. (2020). The benefits of physical exercise for the health of the pancreatic β-cell: A review of the evidence. Experimental Physiology, 105(4), 579589. https://doi.org/10.1113/EP088220

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czech, M. (2017). Insulin action and resistance in obesity and type 2 diabetes. Nature Medicine, 23(7), 804814. https://doi.org/10.1038/NM.4350

  • Davison, K., Coates, A.M., Buckley, J.D., & Howe, P. (2008). Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects. International Journal of Obesity, 32, 12891296. https://doi.org/10.1038/ijo.2008.66

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFronzo, R.A., Ferrannini, E., Groop, L., Henry, R.R., Herman, W.H., Holst, J.J., Hu, F.B., Kahn, C.R., Raz, I., Shulman, G.I., Simonson, D.C., Testa, M.A., & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(1), 122. https://doi.org/10.1038/nrdp.2015.19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eguchi, K., & Manabe, I. (2013). Macrophages and islet inflammation in type 2 diabetes. Diabetes, Obesity & Metabolism, 15(Suppl. 3), 152158. https://doi.org/10.1111/DOM.12168

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellinger, S., & Stehle, P. (2016). Impact of cocoa consumption on inflammation processes—A critical review of randomized controlled trials. Nutrients, 8(6), 321. https://doi.org/10.3390/NU8060321

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, P.L., McMillin, S.L., Weyrauch, L.A., & Witczak, C.A. (2019). Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training. Nutrients, 11(10)2432, 124. https://doi.org/10.3390/NU11102432

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behaior Research Methods, 39(2), 175191. https://doi.org/10.3758/BF03193146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedewa, M.V, Hathaway, E.D., Ward-Ritacco, C.L., Williams, T.D., & Dobbs, W.C. (2018). The effect of chronic exercise training on leptin: A systematic review and meta-analysis of randomized controlled trials. Sports Medicine, 48(6), 14371450. https://doi.org/10.1007/S40279-018-0897-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, M.E.J. (2019). Cocoa flavanols: Natural agents with attenuating effects on metabolic syndrome risk factors. Nutrients, 11(4), 751. https://doi.org/10.3390/NU11040751

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forny-Germano, L., De Felice, F.G., & Vieira, M.N.N. (2019). The role of leptin and adiponectin in obesity-associated cognitive decline and Alzheimer’s disease. Frontiers in Neuroscience, 12(12), Article 1027. https://doi.org/10.3389/FNINS.2018.01027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraga, C.G., Croft, K.D., Kennedy, D.O., & Tomás-Barberán, F.A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2), 514528. https://doi.org/10.1039/C8FO01997E

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franconi, F., Seghieri, G., Canu, S., Straface, E., Campesi, I., & Marloni, W. (2008). Are the available experimental models of type 2 diabetes appropriate for a gender perpective? Pharmacological Research, 57(1), 618. https://doi.org/10.1016/phrs.2007.11007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghorbani, A., Rashidi, R., & Shafiee-Nick, R. (2019). Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomedicine & Pharmacotherapy, 111, 947957. https://doi.org/10.1016/J.BIOPHA.2018.12.127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goya, L., Martín, M.Á., Sarria, B., Ramos, S., Mateos, R., & Bravo, L. (2016). Effect of cocoa and its flavonoids on biomarkers of inflammation: studies of cell culture, animals and humans. Nutrients, 8(4), 212. https://doi.org/10.3390/NU8040212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grace, A., Chan, E., Giallauria, F., Graham, P.L., & Smart, N.A. (2017). Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: A systematic review and meta-analysis. Cardiovascular Diabetology, 16(1), 37. https://doi.org/10.1186/S12933-017-0518-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S.A., Maiya, A.G., Shastry, B.A., Vaishali, K., Ravishankar, N., Hazari, A., Gundmi, S., & Jadhav, R. (2019). Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine, 62(2), 98103. https://doi.org/10.1016/J.REHAB.2018.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludovici, V., Barthelmes, J., Nägele, M.P., Enseleit, F., Ferri, C., Flammer, A.J., Ruschitzka, F., & Sudano, I. (2017). Cocoa, blood pressure, and vascular function. Frontiers in Nutrition, 4(36), 112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massolt, E.T., van Haard, P.M., Rehfeld, J.F., Posthuma, E.F., van der Veer, E., & Schweitzer, D.H. (2010). Appetite suppression through smelling of dark chocolate correlates with changes in ghrelin in young women. Regulatory Peptides, 161(1–3), 8186. https://doi.org/10.1016/J.REGPEP.2010.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, S.L., & Hargreaves, M. (2006). Exercise and skeletal muscle glucose transporter 4 expression: Molecular mechanisms. Clinical and Experimental Pharmacology & Physiology, 33(4), 395399. https://doi.org/10.1111/J.1440-1681.2006.04362.X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, S.L., van Denderen, B.J.W., Howlett, K.F., Mollica, J., Schertzer, J.D., Kemp, B.E., & Hargreaves, M. (2008). AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes, 57(4), 860867. https://doi.org/10.2337/DB07-0843

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melo, B.P., Zacarias, A.C., Oliveira, J.C.C., De Souza, L.M.C., Sabino, J., Ferreira, A.V.M., Tonoli, C., Dos Santos, M.L., Avelar, G.F., Meeusen, R., Heyman, E., & Soares, D.D. (2021). Thirty days of combined consumption of high-fat diet and fructose-rich beverages promotes insulin resistance and modulates inflammatory response and histomorphometry parameters of liver, pancreas, and adipose tissue in Wistar rats. Nutrition, 91–92(2021) Article 111403. https://doi.org/10.1016/j.nut.2021.111403

    • Search Google Scholar
    • Export Citation
  • Niu, Y., Wang, T., Liu, S., Yuan, H., Li, H., & Fu, L. (2017). Exercise-induced GLUT4 transcription via inactivation of HDAC4/5 in mouse skeletal muscle in an AMPKα2-dependent manner. Biochimica et Biophysica Acta Molecular Basis of Disease, 1863(9), 23722381. https://doi.org/10.1016/J.BBADIS.2017.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierozan, P., Jernerén, F., Ransome, Y., & Karlsson, O. (2017). The choice of euthanasia method affects metabolic serum biomarkers. Basic & Clinical Pharmacology & Toxicology, 121(2), 113118. https://doi.org/10.1111/BCPT.12774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, M., Basavaraj, B.V., & Chidambara Murthy, K.N. (2019). Biological functions of epicatechin: Plant cell to human cell health. Journal of Functional Foods, 52, 1424. https://doi.org/10.1016/J.JFF.2018.10.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabadan-Chávez, G., Quevedo-Corona, L., Garcia, A.M., Reyes-Maldonado, E., & Jaramillo-Flores, M.E. (2016). Cocoa powder, cocoa extract and epicatechin attenuate hypercaloric diet-induced obesity through enhanced β-oxidation and energy expenditure in white adipose tissue. Journal of Functional Foods, 20, 5467. https://doi.org/10.1016/J.JFF.2015.10.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramirez-Sanchez, I., Nogueira, L., Moreno, A., Murphy, A., Taub, P., Perkins, G., Ceballos, G. M., Hogan, M., Malek, M., & Villarreal, F. (2012). Stimulatory effects of the flavanol (−)-epicatechin on cardiac angiogenesis: Additive effects with exercise. Journal of Cardiovascular Pharmacology, 60(5), 429438. https://doi.org/10.1097/FJC.0b013e318269ae0d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos, S., Martín, M.A., & Goya, L. (2017). Effects of cocoa antioxidants in type 2 diabetes mellitus. Antioxidants, 6(4), 84. https://doi.org/10.3390/ANTIOX6040084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raveendran, A.V, Chacko, E.C., & Pappachan, J.M. (2018). Non-pharmacological treatment options in the management of diabetes mellitus. European Endocrinology, 14(2), 31. https://doi.org/10.17925/EE.2018.14.2.31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seigo, B., Naomi, O., Midori, N., Yuko, M., Toshio, T., & Terao, J. (2001). Absorption and urinary excretion of (−)-Epicatechin after administration of different levels of cocoa powder or (−)-Epicatechin in rats. Journal of Agricultural and Food Chemistry, 49(12), 60506056. https://doi.org/10.1021/JF010965H

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivitz, W.I., & Yorek, M.A. (2010). Mitochondrial dysfunction in diabetes: From molecular mechanisms to functional significance and therapeutic opportunities. Antioxidants & Redox Signaling, 12(4), 577. https://doi.org/10.1089/ARS.2009.2531

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyler, J.S. (1979). Complications of diabetes mellitus: Relationship to metabolic dysfunction. Diabetes Care, 2(6), 499509.

  • Soares, A.D.N., Wanner, S.P., Morais, E.S.S., Hudson, A.S.R., Martins, F.S., & Cardoso, V.N. (2019). Supplementation with saccharomyces boulardii increases the maximal oxygen consumption and maximal aerobic speed attained by rats subjected to an incremental-speed exercise. Nutrients, 11(10), 2352. https://doi.org/10.3390/NU11102352

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strat, K., Davy, B.M., Hulver, M.W., Davy, K.P., & Neilson, A.P. (2016). Cocoa increases postprandial GLP-1 response in adults with impaired glucose tolerance. The FASEB Journal, 30, 428.5. https://doi.org/10.1096/FASEBJ.30.1_SUPPLEMENT.428.5

    • Search Google Scholar
    • Export Citation
  • Vargas, E., Podder, V., & Sepulveda, M.A.C. (2021). Physiology, glucose transporter type 4. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537322/

    • Search Google Scholar
    • Export Citation
  • Watanabe, N., Inagawa, K., Shibata, M., & Osakabe, N. (2014). Flavan-3-ol fraction from cocoa powder promotes mitochondrial biogenesis in skeletal muscle in mice. Lipids in Health and Disease, 13(1), 18. https://doi.org/10.1186/1476-511X-13-64

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwell-Roper, C.Y., Ehses, J.A., & Verchere, C.B. (2014). Resident macrophages mediate islet amyloid polypeptide–induced islet IL-1β production and β-cell dysfunction. Diabetes, 63(5), 16981711. https://doi.org/10.2337/DB13-0863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D.C. (2007). Mechanisms of calcium-induced mitochondrial biogenesis and GLUT4 synthesis. Applied Physiology, Nutrition, and Metabolism, 32(5), 840845. https://doi.org/10.1139/H07-062

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaribeygi, H., Atkin, S.L., Simental-Mendía, L.E., & Sahebkar, A. (2019). Molecular mechanisms by which aerobic exercise induces insulin sensitivity. Journal of Cellular Physiology, 234(8), 1238512392. https://doi.org/10.1002/JCP.28066

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 606 606 166
Full Text Views 38 38 4
PDF Downloads 45 45 6