Phosphate Loading Does not Improve 30-km Cycling Time-Trial Performance in Trained Cyclists

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Harry PopeDepartment for Health, Centre for Nutrition, Exercise & Metabolism, University of Bath, Bath, United Kingdom

Search for other papers by Harry Pope in
Current site
Google Scholar
PubMed
Close
,
Max DavisDepartment for Health, Centre for Nutrition, Exercise & Metabolism, University of Bath, Bath, United Kingdom

Search for other papers by Max Davis in
Current site
Google Scholar
PubMed
Close
*
,
M. Begona Delgado-CharroDepartment for Health, Centre for Nutrition, Exercise & Metabolism, University of Bath, Bath, United Kingdom

Search for other papers by M. Begona Delgado-Charro in
Current site
Google Scholar
PubMed
Close
,
Oliver J. PeacockDepartment for Health, Centre for Nutrition, Exercise & Metabolism, University of Bath, Bath, United Kingdom

Search for other papers by Oliver J. Peacock in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2435-2903
,
Javier GonzalezDepartment for Health, Centre for Nutrition, Exercise & Metabolism, University of Bath, Bath, United Kingdom

Search for other papers by Javier Gonzalez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9939-0074
, and
James A. BettsDepartment for Health, Centre for Nutrition, Exercise & Metabolism, University of Bath, Bath, United Kingdom

Search for other papers by James A. Betts in
Current site
Google Scholar
PubMed
Close
Restricted access

Phosphate is integral to numerous metabolic processes, several of which strongly predict exercise performance (i.e., cardiac function, oxygen transport, and oxidative metabolism). Evidence regarding phosphate loading is limited and equivocal, at least partly because studies have examined sodium phosphate supplements of varied molar mass (e.g., mono/di/tribasic, dodecahydrate), thus delivering highly variable absolute quantities of phosphate. Within a randomized cross-over design and in a single-blind manner, 16 well-trained cyclists (age 38 ± 16 years, mass 74.3 ± 10.8 kg, training 340 ± 171 min/week; mean ± SD) ingested either 3.5 g/day of dibasic sodium phosphate (Na2HPO4: 24.7 mmol/day phosphate; 49.4 mmol/day sodium) or a sodium chloride placebo (NaCl: 49.4 mmol/day sodium and chloride) for 4 days prior to each of two 30-km time trials, separated by a washout interval of 14 days. There was no evidence of any ergogenic benefit associated with phosphate loading. Time to complete the 30-km time trial did not differ following ingestion of sodium phosphate and sodium chloride (3,059 ± 531 s vs. 2,995 ± 467 s). Accordingly, neither absolute mean power output (221 ± 48 W vs. 226 ± 48 W) nor relative mean power output (3.02 ± 0.78 W/kg vs. 3.08 ± 0.71 W/kg) differed meaningfully between the respective intervention and placebo conditions. Measures of cardiovascular strain and ratings of perceived exertion were very closely matched between treatments (i.e., average heart rate 161 ± 11 beats per minute vs. 159 ± 12 beats per minute; Δ2 beats per minute; and ratings of perceived exertion 18 [14–20] units vs. 17 [14–20] units). In conclusion, supplementing with relatively high absolute doses of phosphate (i.e., >10 mmol daily for 4 days) exerted no ergogenic effects on trained cyclists completing 30-km time trials.

  • Collapse
  • Expand
  • Atkinson, G., & Batterham, A.M. (2015). True and false interindividual differences in the physiological response to an intervention. Experimental Physiology, 100(6), 577588. https://doi.org/10.1113/EP085070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, J.A., Toone, R.J., Stokes, K.A., & Thompson, D. (2009). Systemic indices of skeletal muscle damage and recovery of muscle function after exercise: Effect of combined carbohydrate-protein ingestion. Applied Physiology, Nutrition, and Metabolism, 34(4), 773784. https://doi.org/10.1139/H09-070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, D.N., Osborne, J.O., Stewart, I.B., Costello, J.T., Sims, J.N.L., & Minett, G.M. (2018). The reproducibility of 10 and 20 km time trial cycling performance in recreational cyclists, runners and team sport athletes. Journal of Science and Medicine in Sport, 21(8), 858863. https://doi.org/10.1016/j.jsams.2018.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377381. https://doi.org/10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bredle, D.L., Stager, J.M., Brechue, W.F., & Farber, M.O. (1985). Phosphate supplementation, cardiovascular function, and exercise performance in humans. Journal of Applied Physiology, 65(4), 18211826. https://doi.org/10.1152/jappl.1988.65.4.1821

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bremner, K., Bubb, W.A., Kemp, G.J., Trenell, M.I., & Thompson, C.H. (2002). The effect of phosphate loading on erythrocyte 2,3-bisphosphoglycerate levels. Clinica Chimica Acta, 323(1–2), 111114. https://doi.org/10.1016/S0009-8981(02)00165-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, K.M., & Connolly, D.A. (2001). Effects of sodium phosphate supplementation on maximal oxygen consumption and blood lactate. Medicine & Science in Sports & Exercise, 33(5), S165. https://doi.org/10.1097/00005768-200105001-00936

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, C.P., Dawson, B., Wallman, K.E., & Guelfi, K.J. (2013). Effect of repeated sodium phosphate loading on cycling time-trial performance and VO2peak. International Journal of Sport Nutrition and Exercise Metabolism, 23(2), 187194. https://doi.org/10.1123/ijsnem.23.2.187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, C.P., Dawson, B., Wallman, K.E., & Guelfi, K.J. (2014). Effect of sodium phosphate supplementation on cycling time trial performance and VO2 1 and 8 days post loading. Journal of Sports Science & Medicine, 13(3), 529534.

    • Search Google Scholar
    • Export Citation
  • Brewer, C.P., Dawson, B., Wallman, K.E., & Guelfi, K.J. (2015). Effect of sodium phosphate supplementation on repeated high-intensity cycling efforts. Journal of Sports Sciences, 33(11), 11091116. https://doi.org/10.1080/02640414.2014.989536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J.A., & Glastier, M. (2019). The effects of sodium phosphate supplementation on physiological responses to submaximal exercise and 20 km cycling time-trial performance. Journal of Dietary Supplements, 16(5), 564575. https://doi.org/10.1080/19390211.2018.1472708

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buck, C.L., Dawson, B., Guelfi, K.J., McNaughton, L., & Wallman, K.E. (2014). Sodium phosphate supplementation and time trial performance in female cyclists. Journal of Sports Science & Medicine, 13(3), 469475.

    • Search Google Scholar
    • Export Citation
  • Buck C.L., Henry, T., Guelfi, K., Dawson, B., McNaughton, L.R., & Wallman, K. (2015). Effects of sodium phosphate and beetroot juice supplementation on repeated-sprint ability in females. European Journal of Applied Physiology, 115, 22052213. https://doi.org/10.1007/s00421-015-3201-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buck, C.L., Wallman, K.E., Dawson, B., & Guelfi, K.J. (2014). Sodium phosphate as an ergogenic aid. Sports Medicine, 43, 425435. https://doi.org/10.1007/s40279-013-0042-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cade, R., Conte, M., Zauner, C., Mars, D., Peterson, J., Lunne, D., & Packer, D. (1984). Effects of phosphate loading on 2,3-diphosphoglycerate and maximal oxygen uptake. Medicine & Science in Sports & Exercise, 16(3), 263268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chasiotis, D. (1988). Role of cyclic AMP and inorganic phosphate in the regulation of muscle glycogenolysis during exercise. Medicine & Science in Sports & Exercise, 20(6), 545550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czuba, M., Zając, A., Poprzecki, S., & Cholewa, J. (2008). The influence of sodium phosphate supplementation on VO2max, serum 2,3-diphosphoglycerate level, and heart rate in off-road cyclists. Journal of Human Kinetics, 19, 149164. https://doi.org/10.2478/v10078-008-0012-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czuba, M., Zając, A., Poprzecki, S., Cholewa, J., & Woska, S. (2009). Effects of sodium phosphate loading on aerobic power and capacity in off road cyclists. Journal of Sports Science & Medicine, 8(4), 591599. https://doi.org/10.1016/j.jsams.2007.04.004

    • Search Google Scholar
    • Export Citation
  • Del Coso, J., González-Millán, C., Salinero, J.J., Abián-Vicén, J., Areces, F., Lledó, M., Lara, B., Gallo-Salazar, C., & Ruiz-Vincente, D. (2016). Effects of oral salt supplementation on physical performance during a half-ironman: A randomised controlled trial. Scandinavian Journal of Medicine & Science in Sports, 26(2), 156164. https://doi.org/10.1111/sms.12427

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, D.J., & Conlee, R.K. (1986). Effects of phosphate loading on leg power and high intensity treadmill exercise. Medicine & Science in Sports & Exercise, 18(6), 674677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emsley, J. (1998). The elements (3rd ed., p. 292). De Gruyter. https://doi.org/10.1515/9783110857054

  • Folland, J.P., Stern, R., & Brickley, G. (2008). Sodium phosphate loading improves laboratory cycling time-trial performance in trained cyclists. Journal of Science and Medicine in Sport, 11(5), 464468. https://doi.org/10.1016/j.jsams.2007.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galloway, S.D.R., Tremblay, M.S., Sexsmith, J.R., & Roberts, C.J. (1996). The effects of acute phosphate supplementation in subjects of different aerobic fitness levels. European Journal of Applied Physiology, 72(3), 224230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heffernan, S.M., Horner, K., De Vito, G., & Conway, G.E. (2019). The role of mineral and trace element supplementation in exercise and athletic performance: A review. Nutrients, 11(3), 696. https://doi.org/10.3390/nu11030696

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoon, M., Michael, S., Patton, R.L., & Chapman, P. (2016). A comparison of the accuracy and reliability of the Wahoo KICKR and SRM power metre. Journal of Science and Cycling, 5(3), 1115. https://doi.org/10.28985/jsc.v5i3.240

    • Search Google Scholar
    • Export Citation
  • Kopec, B.J., Dawson, B.T., Buck, C., & Wallman, K.E. (2016). Effects of sodium phosphate and caffeine ingestion on repeated-sprint ability in male athletes. Journal of Science and Medicine in Sport, 19(3), 272276. https://doi.org/10.1016/j.jsams.2015.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kreider, R.B. (1999). Phosphate supplementation in exercise and sport. In J. Driskell& I. Wolinksky (Eds.), Macroelements, water and electrolytes in sports nutrition (29046) (pp. 2946). CRC Press.

    • Search Google Scholar
    • Export Citation
  • Kreider, R.B., Miller, G.W., Schenck, D., Cortes, C.W., Miriel, V., Somma C.T., Rowland, P., Turner, C., & Hill, D. (1992). Effects of phosphate loading on metabolic and myocardial responses to maximal and endurance exercise. International Journal of Sport Nutrition, 2(1), 2047. https://doi.org/10.1123/ijsn.2.1.20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kreider, R.B., Miller, G.W., Williams, M.H., Somma, C.T., & Nasser, T.A. (1990). Effects of phosphate loading on oxygen uptake, ventilatory anaerobic threshold, and run performance. Medicine & Science in Sports & Exercise, 22(2), 250256.

    • Search Google Scholar
    • Export Citation
  • Lichtman, M.A., Miller, D.R., & Cohen, J. (1971). Reduced red cell glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration, and increased hemoglobin-oxygen affinity caused by hypophosphatemia. Annals of Internal Medicine, 74(4), 562568. https://doi.org/10.7326/0003-4819-74-4-562

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonald, R. (1977). Red cell 2,3-diphosphoglycerate and oxygen affinity. Association of Anaesthetists, 32(6), 544553. https://doi.org/10.1111/j.1365-2044.1977.tb10002.x

    • Search Google Scholar
    • Export Citation
  • Mauger, A.R., Jones, A.M., & Williams, C.A. (2010). Influence of exercise variation on the retention of a pacing strategy. European Journal of Applied Physiology, 108, 10151023. https://doi.org/10.1007/s00421-009-1308-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munson, E.H., Orange, S.T., Bray, J.W., Thurlow, S., Marshall, P., & Vince, R.V. (2020). Sodium ingestion improves groundstroke performance in nationally-ranked tennis players: A randomized, placebo-controlled crossover trial. Frontiers in Nutrition, 7, 549413. https://doi.org/10.3389/fnut.2020.549413

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, L.R., Wheeler, W.S., & Bethune, J.E. (1977). Effect of Hypophosphatemia on myocardial performance in men. The New England Journal of Medicine, 297(17), 901903. https://doi.org/10.1056/NEJM197710272971702

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasadyn, S.R., Soudan, M., Gillinov, M., Houghtaling, P., Phelan, D., Gillinov, N., Bittel, B., & Desai, M.Y. (2019). Accuracy of commercially available heart rate monitors in athletes: A prospective study. Cardiovascular Diagnosis and Therapy, 9(4), 379385. https://doi.org/10.21037/cdt.2019.06.05

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peiffer, J.J., & Losco, B. (2011). Reliability/validity of the fortius trainer. International Journal of Sports Medicine, 32(5), 353356. https://doi.org/10.1055/s-0031-1271772

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Płoszczyca, K., Chalimoniuk, M., Pryzbylska, I., & Czuba, M. (2022). Effects of short-term phosphate loading on aerobic capacity under acute hypoxia in cyclists: A randomised, placebo-controlled, crossover study. Nutrients, 14(2), 236. https://doi.org/10.3390/nu14020236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remes, K., Vuopio, P., & Harkonen, M. (1979). Effect of long-term training and acute physical exercise on red cell 2,3-diphosphoglycerate. European Journal of Applied Physiology and Occupational Physiology, 42(3), 199207. https://doi.org/10.1007/BF00431026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawka, M.N., & Montain, S.J. (2000). Fluid and electrolyte supplementation for exercise heat stress. The American Journal of Clinical Nutrition, 71(2), 564572. https://doi.org/10.1093/ajcn/72.2.564S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenck, D, Kreider, R.B., Miller, G.W., Cortes, C.W., Miriel, V., Corsson, C.D. (1991). Effect of phosphate loading on 40 km cycling performance. Medicine & Science in Sports & Exercise, 23(4). S76.

    • Search Google Scholar
    • Export Citation
  • Sporer, B.C., & McKenzie, D.C. (2007). Reproducibility of laboratory based 20-km time trial evaluation in competitive cyclists using the Veletron Pro ergometer. International Journal of Sports Medicine, 28, 940944. https://doi.org/10.1055/s-2007-964977

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I., McNaughton, L., Davies, P., & Tristram, S. (1990). Phosphate loading and the effects on VO2max in trained cyclists. Research Quarterly for Exercise and Sport, 61(1), 8084. https://doi.org/10.1080/02701367.1990.10607481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., Galloway, S.D.R., & Sexsmith, J.R. (1994). Ergogenic effects of phosphate loading: Physiological fact or methodological fiction? Canadian Journal of Applied Physiology, 19(1), 111. https://doi.org/.1139/h94-001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wellek, S., & Blettner, M. (2012). On proper use of the crossover design in clinical trials. Deutsches Ärzteblatt International, 109(15), 276281. https://doi.org/10.3238/arztebl.2012.0276

    • Search Google Scholar
    • Export Citation
  • West, J.S., Ayton, T., Wallman, K.E., & Guelfi, K.J. (2012). The effect of 6 days of sodium phosphate supplementation on appetite, energy intake, and aerobic capacity in trained men and women. International Journal of Sport Nutrition and Exercise Metabolism, 22(6), 422429. https://doi.org/10.1123/ijsnem.22.6.422

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerblad, H., Allen, D.G., & Lännergren, J. (2002). Muscle fatigue: Lactic acid or inorganic phosphate the major cause? Physiology, 17(1), 1721. https://doi.org/10.1152/physiologyonline.2002.17.1.17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavorsky, G.S., Murias, J.M., Gow, J., Kim, D.J., Poulin-Harnois, C., Kurbow, S., Lands, L.C. (2007). Laboratory 20-km cycle time trial reproducibility. International Journal of Sports Medicine, 28, 743748. https://doi.org/10.1055/s-2007-964969

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 259 259 73
Full Text Views 16 16 1
PDF Downloads 26 26 3