Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Previous research showed that gross efficiency (GE) declines during exercise and therefore influences the expenditure of anaerobic and aerobic resources.

Purpose:

To calculate the anaerobic work produced during cycling time trials of different length, with and without a GE correction.

Methods:

Anaerobic work was calculated in 18 trained competitive cyclists during 4 time trials (500, 1000, 2000, and 4000-m). Two additional time trials (1000 and 4000 m) that were stopped at 50% of the corresponding “full” time trial were performed to study the rate of the decline in GE.

Results:

Correcting for a declining GE during time-trial exercise resulted in a significant (P < .001) increase in anaerobically attributable work of 30%, with a 95% confidence interval of [25%, 36%]. A significant interaction effect between calculation method (constant GE, declining GE) and distance (500, 1000, 2000, 4000 m) was found (P < .001). Further analysis revealed that the constant-GE calculation method was different from the declining method for all distances and that anaerobic work calculated assuming a constant GE did not result in equal values for anaerobic work calculated over different time-trial distances (P < .001). However, correcting for a declining GE resulted in a constant value for anaerobically attributable work (P = .18).

Conclusions:

Anaerobic work calculated during short time trials (<4000 m) with a correction for a declining GE is increased by 30% [25%, 36%] and may represent anaerobic energy contributions during high-intensity exercise better than calculating anaerobic work assuming a constant GE.

Mulder, Noordhof, and de Koning are with MOVE Research Inst Amsterdam, VU University, Amsterdam, The Netherlands. Malterer and Foster are with the Dept of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI. Address author correspondence to Roy Mulder at r.c.m.mulder@vu.nl.