Click name to view affiliation
The novel self-paced maximal-oxygen-uptake (VO2max) test (SPV) may be a more suitable alternative to traditional maximal tests for elite athletes due to the ability to self-regulate pace. This study aimed to examine whether the SPV can be administered on a motorized treadmill.
Fourteen highly trained male distance runners performed a standard graded exercise test (GXT), an incline-based SPV (SPVincline), and a speed-based SPV (SPVspeed). The GXT included a plateau-verification stage. Both SPV protocols included 5 × 2-min stages (and a plateau-verification stage) and allowed for self-pacing based on fixed increments of rating of perceived exertion: 11, 13, 15, 17, and 20. The participants varied their speed and incline on the treadmill by moving between different marked zones in which the tester would then adjust the intensity.
There was no significant difference (P = .319, ES = 0.21) in the VO2max achieved in the SPVspeed (67.6 ± 3.6 mL · kg−1 · min−1, 95%CI = 65.6–69.7 mL · kg−1 · min−1) compared with that achieved in the GXT (68.6 ± 6.0 mL · kg−1 · min−1, 95%CI = 65.1–72.1 mL · kg−1 · min−1). Participants achieved a significantly higher VO2max in the SPVincline (70.6 ± 4.3 mL · kg−1 · min−1, 95%CI = 68.1–73.0 mL · kg−1 · min−1) than in either the GXT (P = .027, ES = 0.39) or SPVspeed (P = .001, ES = 0.76).
The SPVspeed protocol produces VO2max values similar to those obtained in the GXT and may represent a more appropriate and athlete-friendly test that is more oriented toward the variable speed found in competitive sport.
The authors are with the School of Sport & Exercise Sciences, University of Kent, Chatham, UK. Address author correspondence to Alexis Mauger at Lex.Mauger@gmail.com.