Cardiac Parasympathetic Activity and Race Performance: An Elite Triathlete Case Study

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

The authors examined whether changes in heart-rate (HR) variability (HRV) could consistently track adaptation to training and race performance during a 32-wk competitive season. An elite male long-course triathlete recorded resting HR (RHR) each morning, and vagal-related indices of HRV (natural logarithm of the square root of mean squared differences of successive R−R intervals [ln rMSSD] and the ratio of ln rMSSD to R−R interval length [ln rMSSD:RR]) were assessed. Daily training load was quantified using a power meter and wrist-top GPS device. Trends in HRV indices and training load were examined by calculating standardized differences (ES). The following trends in week-to-week changes were consistently observed: (1) When the triathlete was coping with a training block, RHR decreased (ES −0.38 [90% confidence limits −0.05;−0.72]) and ln rMSSD increased (+0.36 [0.71;0.00]). (2) When the triathlete was not coping, RHR increased (+0.65 [1.29;0.00]) and ln rMSSD decreased (−0.60 [0.00;−1.20]). (3) Optimal competition performance was associated with moderate decreases in ln rMSSD (−0.86 [−0.76;−0.95]) and ln rMSSD:RR (−0.90 [−0.60;−1.20]) in the week before competition. (4) Suboptimal competition performance was associated with small decreases in ln rMSSD (−0.25 [−0.76;−0.95]) and trivial changes in ln rMSSD:RR (−0.04 [0.50;−0.57]) in the week before competition. To conclude, in this triathlete, a decrease in RHR concurrent with increased ln rMSSD compared with the previous week consistently appears indicative of positive training adaptation during a training block. A simultaneous reduction in ln rMSSD and ln rMSSD:RR during the final week preceding competition appears consistently indicative of optimal performance.

Stanley is with the School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia. D’Auria is with the Triathlon Program, Queensland Academy of Sport, Brisbane, Australia. Buchheit is with the Sport Science Unit, Myorobie Association, Montvalezan, France.

Address author correspondence to Jamie Stanley at j.stanley@uq.edu.au.