Neuromuscular Fatigue and Muscle Damage After a Women’s Rugby Sevens Tournament

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose:

To examine relationships between on-field game movement patterns and changes in markers of neuromuscular fatigue and muscle damage during a 2-d women’s rugby sevens tournament.

Methods:

Female national (mean ± SD n = 12, 22.3 ± 2.5 y, 1.67 ± 0.04 m, 65.8 ± 4.6 kg) and state (n = 10, 24.4 ± 4.3 y, 1.67 ± 0.03 m, 66.1 ± 7.9 kg) representative players completed baseline testing for lower-body neuromuscular function (countermovement-jump [CMJ] test), muscle damage (capillary creatine kinase [CK]), perceived soreness, and perceived recovery. Testing was repeated after games on days 1 and 2 of the tournament. GPS (5-Hz) data were collected throughout the tournament (4−6 games/player).

Results:

National players were involved in greater on-field movements for total time, distance, high-speed running (>5 m/s), and impacts >10 g (effect size [ES] = 0.55−0.97) and displayed a smaller decrement in performance from day 1 to day 2. Despite this, state players had a much greater 4-fold increase (ΔCK = 737 U/L) in CK compared with the 2-fold increase (ΔCK = 502 U/L) in national players (ES = 0.73). Both groups had similar perceived soreness and recovery while CMJ performance was unchanged. High-speed running and impacts >10 g were largely correlated (r = .66−.91) with ΔCK for both groups.

Conclusion:

A 2-day women’s rugby sevens tournament elicits substantial muscle damage; however, there was little change in lower-body neuromuscular function. Modest increases in CK can largely be attributed to high-speed running and impacts >10 g that players typically endure.

Clarke and Pyne are with the Physiology Dept, Australian Institute of Sport, Canberra, Australia. Anson is with UCRISE, University of Canberra, Canberra, Australia.

Address author correspondence to Anthea Clarke at Anthea.Clarke@ausport.gov.au.