Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Regular monitoring of adaptation to training is important for optimizing training load and recovery, which is the main factor in successful training.

Purpose:

To investigate the usefulness of a novel submaximal running test (SRT) in field conditions in predicting and tracking changes of endurance performance.

Methods:

Thirty-five endurance-trained men and women (age 20–55 y) completed the 18-wk endurance-training program. A maximal incremental running test was performed at weeks 0, 9, and 18 for determination of maximal oxygen consumption (VO2max) and running speed (RS) at exhaustion (RSpeak) and lactate thresholds (LTs). In addition, the subjects performed weekly a 3-stage SRT including a postexercise heart-rate-recovery (HRR) measurement. The subjects were retrospectively grouped into 4 clusters according to changes in SRT results.

Results:

Large correlations (r = .60–.89) were observed between RS during all stages of SRT and all endurance-performance variables (VO2max, RSpeak, RS at LT2, and RS at LT1). HRR correlated only with VO2max (r = .46). Large relationships were also found between changes in RS during 80% and 90% HRmax stages of SRT and a change of RSpeak (r = .57, r = .79). In addition, the cluster analysis revealed the different trends in RS during 80% and 90% stages during the training between the clusters, which showed different improvements in VO2max and RSpeak.

Conclusions:

The current SRT showed great potential as a practical tool for regular monitoring of individual adaptation to endurance training without time-consuming and expensive laboratory tests.

Vesterinen, Nummela, Laine, Hynynen, and Mikkola are with KIHU—Research Inst for Olympic Sports, Jyväskylä, Finland. Äyrämö is with the Agora Center, and Häkkinen, the Dept of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland.

Address author correspondence to Ville Vesterinen at ville.vesterinen@kihu.fi.