Muscle Fatigue When Swimming Intermittently Above and Below Critical Speed

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00


To examine muscle fatigue of the shoulder internal rotators alongside swimming biomechanics during long-duration submaximal swimming sets performed in 2 different speed domains.


Eight trained swimmers (mean ± SD 20.5 ± 0.9 y, 173 ± 10 cm, 71.3 ± 10.0 kg) raced over 3 distances (200-, 400-, 800-m races) for determination of critical speed (CS; slope of the distance–time relationship). After a familiarization with muscle isokinetic testing, they subsequently randomly performed 2 constant-speed efforts (6 × 5-min blocks, 2.5-min recovery) 5% above (T105) and 5% below CS (T95) with maximal voluntary contractions recorded between swimming blocks.


Capillary blood lactate concentration ([La]), rating of perceived exertion (RPE), peak torque, stroke length, and stroke rate were maintained throughout T95 (P < .05). [La], RPE, and stroke rate increased alongside concomitant decreases in maximal torque and stroke length during T105 (P < .05) with incapacity of the swimmers to maintain the pace for longer than ~20 min. For T105, changes in maximal torque (35.0 ± 14.9 to 25.8 ± 12.1 Nm) and stroke length (2.66 ± 0.36 to 2.23 ± 0.24 m/cycle) were significantly correlated (r = .47, P < .05).


While both muscle fatigue (shoulder internal rotators) and task failure occur when swimming at a pace greater than CS, the 2.5-min recovery period during the sub-CS set possibly alleviated the development of muscle fatigue for the pace to be sustainable for 6 × 5 min at 95% of CS. A causal relationship between reduction in stroke length and loss of muscle strength should be considered very cautiously in swimming.

The authors are with Sport, Exercise Science And Medicine (SESAME), University of Brighton, Eastbourne, UK.

Address author correspondence to Jeanne Dekerle at
All Time Past Year Past 30 Days
Abstract Views 1258 986 60
Full Text Views 41 19 0
PDF Downloads 48 23 0