Wingate Test as a Strong Predictor of 1500-m Performance in Elite Speed Skaters

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Wingate test scores are strongly associated with anaerobic capacity in athletes involved in speed-endurance sports. In speed skating Wingate results are known to predict performance cross-sectionally but have not been investigated relative to their ability to predict performance longitudinally. Purpose: To investigate whether Wingate tests performed during summer training are predictive of 1500-m speed-skating performance the subsequent winter in elite speed skaters. Methods: Wingate test results from the summer training periods and 1500-m performances during the subsequent winter were analyzed over a 3-y period in 5 female and 8 male elite (Olympic, World Championship, and World Cup medalists) speed skaters. Regression analyses using generalized estimating equations (GEE) were used to estimate the relationship between Wingate test variables and 1500-m speed-skating performance. Wingate peak power (PP) and mean power (MP) were used to predict 1500-m time and 400-m lap times. Results: Improvements of 1 W/kg on PP and MP in women predict improvements of −0.75 s and −2.05 s, respectively, on 1500-m time (World Record 110.85 s). In men, improvements in PP and MP were associated with performance improvements of −0.92 s and −2.32 s on 1500-m time per 1 W/kg (World Record 101.04 s). Conclusion: Wingate test results achieved during the summer training period are a good predictor of improvements in 1500-m speed-skating performance during the subsequent winter. For the smallest worthwhile improvement in 1500-m performance, a gain in PP and MP of 2.1% and 1.4% (0.38 and 0.14 W/kg) for females and 1.2% and 0.9% (0.29 and 0.12 W/kg) for males is needed.

The authors are with the Dept of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

de Koning (j.j.de.koning@vu.nl) is corresponding author.
  • 1.

    Bar-Or O. The Wingate anaerobic test: an update on methodology, reliability and validity. Sports Med. 1987;4:381–394. PubMed doi:10.2165/00007256-198704060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    de Koning JJ, Bakker FC, de Groot G, van Ingen Schenau GJ. Longitudinal development of young talented speed skaters: physiological and anthropometric aspects. J Appl Physiol. 1994;77:2311–2317. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    van Ingen Schenau GJ, Bakker FC, de Groot G, de Koning JJ. Supramaximal cycle tests do not detect seasonal progression in performance in groups of elite speed skaters. Eur J Appl Physiol. 1992;64:292–297. doi:10.1007/BF00636214

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    van Ingen Schenau GJ, de Koning JJ, Bakker FC, de Groot G. Performance influencing factors in homogeneous groups of top athletes: a cross-sectional study. Med Sci Sports Exerc. 1996;28:531–535. PubMed doi:10.1097/00005768-199604000-00020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Neumayr G, Hoertnagl H, Pfister R, Koller A, Eibl G, Raas E. Physical and physiological factors associated with success in professional alpine skiing. Int J Sports Med. 2003;24:131–137. PubMed doi:10.1055/s-2003-38205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Nightingale SC, Miller S, Turner A. The usefulness and reliability of fitness testing protocols for ice hockey players. J Strength Cond Res. 2013;27:1742–1748. PubMed doi:10.1519/JSC.0b013e3182736948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Foster C, Thompson NN, Snyder AC. Physiology of Speed Skating. Milwaukee, WI: University of Wisconsin Medical School; 1990.

  • 8.

    van Ingen Schenau GJ, de Groot G, Schreurs AW, Meester H, de Koning JJ. A new skate allowing powerful plantar flexions improves performance. Med Sci Sports Exerc. 1996;28:531–535. PubMed doi:10.1097/00005768-199604000-00020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    de Koning JJ, Houdijk H, de Groot G, Bobbert MF. From biomechanical theory to application in top sports: the klapskate story. J Biomech. 2000;33:1225–1229. PubMed doi:10.1016/S0021-9290(00)00063-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    de Koning JJ, Foster C, Lucia A, Bobbert MF, Hetinga FJ, Porcari JP. Using modeling to understand how athletes in different disciplines solve the same problem: swimming vs running vs speed skating. Int J Sports Physiol Perform. 2011;6:276–280. PubMed doi:10.1123/ijspp.6.2.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    de Koning JJ, Foster C, Lampen J, Hettinga F, Bobbert MF. Experimental evaluation of the power balance model of speed skating. J Appl Physiol. 2005;98:227–233. PubMed doi:10.1152/japplphysiol.01095.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Foster C, de Koning JJ, Hettinga FJ, et al. Pattern of energy expenditure during simulated competition. Med Sci Sports Exerc. 2003;35:826–831. PubMed doi:10.1249/01.MSS.0000065001.17658.68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33:157–162. PubMed doi:10.1097/00005768-200101000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    MacIntosch BR, Rishaug P, Svedahl K. Assessment of peak power and short-term work capacity. Eur J Appl Physiol. 2003;88:572–579. doi:10.1007/s00421-002-0742-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Liang K-Y, Zegers SL. Regression analysis for correlated data. Ann Rev Publ Health. 1993;14:43–68. doi:10.1146/annurev.pu.14.050193.000355

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31:472–485. PubMed doi:10.1097/00005768-199903000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Noordhof DA, Mulder RCM, de Koning JJ, Hopkins WG. Race factors affecting performance times in elite long-track speed skating. Int J Sports Physiol Perform. 2016;11:535–542. PubMed doi:10.1123/ijspp.2015-0171

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Malcata RM, Hopkins WG. Variability of competitive performance of elite athletes: a systematic review. Sports Med. 2014;44:1763–1774. PubMed doi:10.1007/s40279-014-0239-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Granier P, Mercier B, Mercier J, Anselme F, Préfaut C. Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners. Eur J Appl Physiol. 1995;70:58–65. doi:10.1007/BF00601809

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hulleman M, de Koning JJ, Hettinga FJ, Foster C. The effect of extrinsic motivation on cycle time trial performance. Med Sci Sports Exerc. 2007;39:709–715. PubMed doi:10.1249/mss.0b013e31802eff36

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hettinga FJ, de Koning JJ, Meijer E, Teunissen L, Foster C. Effect of pacing strategy on energy expenditure during a 1500-m cycling time-trial. Med Sci Sports Exerc. 2007;39:2212–2218. PubMed doi:10.1249/mss.0b013e318156e8d4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hettinga FJ, de Koning JJ, Schmidt LJI, Wind NAC, MacIntosh BR, Foster C. Optimal pacing strategy: from theoretical modeling to reality in 1500-m speed skating. Br J Sports Med. 2011;45:30–35. PubMed doi:10.1136/bjsm.2009.064774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Noordhof DA, Foster C, Hoozemans MJM, de Koning JJ. The association between changes in speed skating technique and changes in skating velocity. Int J Sports Physiol Perform. 2014;9:68–76. PubMed doi:10.1123/ijspp.2012-0131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Foster C, Schrager M, Snyder AC, Thompson NN. Pacing strategy and athletic performance. Sports Med. 1994;17:77–85. PubMed doi:10.2165/00007256-199417020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kraemer WJ, Patton JF, Gordon SE, et al. Compatibility of high-intensity strength and endurance training on hormonal anbd skeletal muscle adaptations. J Appl Physiol. 1995;78:976–989. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Coffey VG, Hawley JA. Training for performance: insights from molecular biology. Int J Sports Physiol Perform. 2006;1:284–292. PubMed doi:10.1123/ijspp.1.3.284

  • 27.

    Coppin E, Heath EM, Bressel E, Wagner DR. Wingate anaerobic test reference values for male power athletes. Int J Sports Physiol Perform. 2012;7:232–236. PubMed doi:10.1123/ijspp.7.3.232

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Astorino TA, Cottrell T. Reliability and validity of the Velotron Racermate cycle egometer to measure anaerobic power. Int J Sports Med. 2012;33:205–210. PubMed doi:10.1055/s-0031-1291219

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 780 780 153
Full Text Views 79 79 4
PDF Downloads 40 40 5