Assessments of Mechanical Stiffness and Relationships to Performance Determinants in Middle-Distance Runners

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To examine relationships between methods of lower-limb stiffness and their associations with running economy (RE) and maximal velocity (vmax) in middle-distance (MD) runners. Methods: Eleven highly trained male MD runners performed a series of mechanical and physiological tests to determine maximal overground sprint speed, RE, and V˙O2peak. Achilles tendon stiffness (kT) was estimated using ultrasonography during maximal isometric ankle plantar flexion. Global stiffness qualities were evaluated using a spring-mass model, providing measures of leg (kleg) and vertical stiffness (kvert) during running and jumping, respectively. Results: Very large (r = −.70) and large (r = −.60) negative relationships existed between RE and kT and kvert, during plantar flexion and unilateral jumps, respectively. There were large (r = .63) and extremely large (r = −.92) associations between kvert and kT and kleg during sprinting, respectively. Runners’ vmax had large positive associations between kT (r = .52) and kleg (r = .59) during sprinting. Conclusions: In well-trained MD athletes, greater stiffness appears linked to faster and more economical running. Although kT had the strongest relationship with RE, kleg while sprinting and kvert in maximal unilateral jumps may be more practical measures of stiffness. Agreement between global stiffness assessments and kT highlights the energy contribution of the Achilles tendon to running efficiency and velocity. Further research incorporating these assessment tools could help establish more comprehensive mechanical and metabolic athlete profiles and further our understanding of training adaptations, especially stiffness modification, longitudinally.

Rogers is with the Australian Inst of Sport, Bruce, Australia. Whatman and Kilding are with Sports Performance Research Inst New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. Pearson is with the Queensland Academy of Sport, Brisbane, Australia.

Rogers (simon.rogers@ausport.gov.au) is corresponding author.
  • 1.

    Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33:157162. PubMed doi:10.1097/00005768-200101000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Mytton GJ, Archer DT, Turner L, et al. Increased variability of lap speeds: differentiating medalists and nonmedalists in middle-distance running and swimming events. Int J Sports Physiol Perform. 2015;10:369373. PubMed doi:10.1123/ijspp.2014-0207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Pearson SJ, McMahon J. Lower limb mechanical properties: determining factors and implications for performance. Sports Med. 2012;42:929940. PubMed doi:10.1007/BF03262304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Brughelli M, Cronin J. Influence of running velocity on vertical, leg and joint stiffness. Sports Med. 2008;38:648657.

  • 5.

    Chelly SM, Denis C. Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc. 2001;33:326333. PubMed doi:10.1097/00005768-200102000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kubo K, Miyazaki D, Shimoju S, Tsunoda N. Relationship between elastic properties of tendon structures and performance in long distance runners. Eur J Appl Physiol. 2015;115:17251733. PubMed doi:10.1007/s00421-015-3156-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89:17. PubMed doi:10.1007/s00421-002-0741-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Barnes KR, McGuigan MR, Kilding AE. Lower-body determinants of running economy in male and female distance runners. J Strength Cond Res. 2014;28:12891297. PubMed doi:10.1519/JSC.0000000000000267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Barnes KR, Kilding AE. Running economy: measurement, norms, and determining factors. Sports Med Open. 2015;1:115. doi:10.1186/s40798-015-0007-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Dalleau G, Belli A, Bourdin M, Lacour JR. The spring-mass model and the energy cost of treadmill running. Eur J Appl Physiol Occup Physiol. 1998;77:257263. PubMed doi:10.1007/s004210050330

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Morin JB, Jeannin T, Chevallier B, Belli A. Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. Int J Sports Med. 2006;27:158165. PubMed doi:10.1055/s-2005-837569

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Clark KP, Weyand PG. Are running speeds maximized with simple-spring stance mechanics? J Appl Physiol. 2014;117:604615. PubMed doi:10.1152/japplphysiol.00174.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Joseph CW, Bradshaw EJ, Kemp J, Clark RA. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running. J Appl Biomech. 2013;29:386394. PubMed doi:10.1123/jab.29.4.386

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hobara H, Inoue K, Kobayashi Y, Ogata T. A comparison of computation methods for leg stiffness during hopping. J Appl Biomech. 2014;30:154159. PubMed doi:10.1123/jab.2012-0285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Albracht K, Arampatzis A. Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans. Eur J Appl Physiol. 2013;113:16051615. PubMed doi:10.1007/s00421-012-2585-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Alexander RM. The spring in your step: the role of elastic mechanisms in human running. In: de Groot G, Hollander AP, Huijing P, van Ingen Schenau G, eds. Biomechanics XI-A. International Series on Biomechanics. Amsterdam, The Netherlands: Free University Press; 1989:1725.

    • Search Google Scholar
    • Export Citation
  • 17.

    Brughelli M, Cronin J. A review of research on the mechanical stiffness in running and jumping: methodology and implications. Scand J Med Sci Sports. 2008;18:417426. PubMed doi:10.1111/j.1600-0838.2008.00769.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Barnes KR, Hopkins WG, McGuigan MR, Northuis ME, Kilding AE. Effects of resistance training on running economy and cross-country performance. Med Sci Sports Exerc. 2013;45:23222331. PubMed doi:10.1249/MSS.0b013e31829af603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    IAAF. IAAF Scoring Tables of Athletics. Monaco, Europe: International Association of Athletics Federations; 2014.

  • 20.

    Cross MR, Brughelli M, Brown SR, et al. Mechanical properties of sprinting in Elite Rugby Union and Rugby League. Int J Sports Physiol Perform. 2015;10:695702. PubMed doi:10.1123/ijspp.2014-0151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Morin JB, Dalleau G, Kyröläinen H, Jeannin T, Belli A. A simple method for measuring stiffness during running. J Appl Biomech. 2005;21:167180. PubMed doi:10.1123/jab.21.2.167

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Fletcher JR, Esau SP, MacIntosh BR. Changes in tendon stiffness and running economy in highly trained distance runners. Eur J Appl Physiol. 2010;110:10371046. PubMed doi:10.1007/s00421-010-1582-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Manal K, Cowder JD, Buchanan TS. A hybrid method for computing Achilles tendon moment arm using ultrasound and motion analysis. J Appl Biomech. 2010;26:224228. PubMed doi:10.1123/jab.26.2.224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Saunders PU, Telford RD, Pyne DB, et al. Short-term plyometric training improves running economy in highly trained middle and long distance runners. J Strength Cond Res. 2006;20:947954. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p value. Sportscience. 2007;11:1620. http://www.sportsci.org/2007/wghinf.htm

    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins WG. A spreadsheet to compare means of two groups. Sportscience. 2007;11:2223. http://www.sportsci.org/2007/inbrief.htm#xcl2

  • 27.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dalleau G, Belli A, Viale F, Lacour J, Bourdin M. A simple method for field measurements of leg stiffness in hopping. Int J Sports Med. 2004;25:170176. PubMed doi:10.1055/s-2003-45252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Arampatzis A, Karamanidis K, Morey-Klapsing G, De Monte G, Stafilidis S. Mechanical properties of the triceps surae tendon and aponeurosis in relation to intensity of sport activity. J Biomech. 2007;40:19461952. PubMed doi:10.1016/j.jbiomech.2006.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Weyand PG, Sandell RF, Prime DNL, Bundle MW. The biological limits to running speed are imposed from the ground up. J Appl Physiol. 2010;108:950961. PubMed doi:10.1152/japplphysiol.00947.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 449 302 41
Full Text Views 24 15 2
PDF Downloads 24 15 2