The Effects of Caffeine, Taurine, or Caffeine-Taurine Coingestion on Repeat-Sprint Cycling Performance and Physiological Responses

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To investigate the effects of caffeine (C), taurine (T), caffeine and taurine coingestion (C +T), or placebo (P) on repeated Wingate cycling performance and associated physiological responses. Methods: Seven male team-sport players participated in a randomized, single-blind, crossover study, where they completed 3 Wingate tests, each separated by 2 min, an hour after ingesting: C (5 mg/kg body mass [BM]), T (50 mg/kg BM), C +T (5 mg/kg BM + 50 mg/kg BM), or P (5 mg/kg BM) in a gelatin capsule. Performance was measured on an ergometer, and blood lactate, perceived exertion, heart rate (HR), mean arterial pressure (MAP), and rate pressure product (RPP) were measured at rest (presupplement), baseline (1 h postsupplement), and during and after exercise. Results: Magnitude-based inferences revealed that all of the supplements increased (small to moderate, likely to very likely) mean peak power (MPP), peak power (PP), and mean power (MP) compared to P, with greater MPP, PP, and MP in T compared to C (small, possible). Intrasprint fatigue index (%FIIntra) was greater in T compared to P and C (moderate, likely), and %FIInter was lower in T compared to C (small, possible). C and C +T increased HR, MAP, and RPP compared to P and T at baseline (moderate to very large, likely to most likely); however, these only remained higher in C compared to all conditions in the final sprint. Conclusions: T elicited greater improvements in performance compared to P, C, or C +T while reducing the typical chronotropic and pressor effects of C.

The authors are with the School of Sport, Health and Applied Science, St Mary’s University, London, United Kingdom. Waldron is also with the School of Science and Technology, University of New England, Armidale, NSW, Australia.

Waldron (mark.waldron@stmarys.ac.uk) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    McLellan TMLieberman HR. Do energy drinks contain active components other than caffeine? Nutr Rev. 2012;70(12):730744. PubMed doi:10.1111/j.1753-4887.2012.00525.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):13191334. PubMed doi:10.1139/H08-130

  • 3.

    Stuart GRHopkins WGCook CCairns SP. Multiple effects of caffeine on simulated high-intensity team-sport performance. Med Sci Sports Exerc. 2005;37(11):19982005. PubMed doi:10.1249/01.mss.0000177216.21847.8a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mohr MNielsen JJBangsbo J. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J Appl Physiol. 2011;111(5):13721379. PubMed doi:10.1152/japplphysiol.01028.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Balshaw TGBampouras TMBarry TJSparks SA. The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids. 2013;44(2):555561. PubMed doi:10.1007/s00726-012-1372-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rutherford JASpriet LLStellingwerff T. The effect of acute taurine ingestion on endurance performance and metabolism in well-trained cyclists. Int J Sport Nutr Exerc Metab. 2010;20(4):322329. PubMed doi:10.1123/ijsnem.20.4.322

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Milioni FMalta Ede SRocha LGet al. Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear. Appl Physiol Nutr Metab. 2016;41(5):498503. PubMed doi:10.1139/apnm-2015-0435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tallis JDuncan MJJames RS. What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance? Br J Pharmacol. 2015;172:37033713. PubMed doi:10.1111/bph.13187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Galler SHutzler CHaller T. Effects of taurine on Ca2 +-dependent force development of skinned muscle fibre preparations. J Exp Biol. 1990;152(1):255264. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bakker AJBerg HM. Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J Physiol. 2002;538(1):185194. PubMed doi:10.1113/jphysiol.2001.012872

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hamilton EJBerg HMEaston CJBakker AJ. The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse. Amino Acids. 2006;31(3):273278. PubMed doi:10.1007/s00726-006-0291-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Doerner JMKuetting DLLuetkens JAet al. Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers. Int J Cardiovasc Imaging. 2015;31(3):595601.PubMed doi:10.1007/s10554-014-0577-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hajsadeghi SMohammadpour FManteghi MJet al. Effects of energy drinks on blood pressure, heart rate, and electrocardiographic parameters: an experimental study on healthy young adults. Anatol J Cardiol. 2016;16(2):9499. PubMed doi:10.5152/akd.2015.5930

    • Search Google Scholar
    • Export Citation
  • 14.

    Bichler ASwenson AHarris MA. A combination of caffeine and taurine has no effect on short term memory but induces changes in heart rate and mean arterial blood pressure. Amino Acids. 2006;31(4):471476. PubMed doi:10.1007/s00726-005-0302-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Crisafulli ACarta CMelis Fet al. Haemodynamic responses following intermittent supramaximal exercise in athletes. Antonio Exp Physiol. 2004;89(6):665674. PubMed doi:10.1113/expphysiol.2004.027946

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Lavine SJWalsh T. Exercise tolerance and the post exercise diastolic filling pattern in patients with the resting impaired relaxation. Cardiol Res. 2011;2(4):139149. PubMed doi:10.4021/cr71w

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fredholm BBBattig KHolmen JNehlig AZvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83133. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Schuh KJGriffiths RR. Caffeine reinforcement—the role of withdrawal. Psychopharmacology. 1997;130(4):320326. PubMed doi:10.1007/s002130050246

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kenemans JLLorist MM. Caffeine and selective visual processing. Pharmacol Biochem Behav. 1995;52(3):461471. PubMed doi:10.1016/0091-3057(95)00159-T

  • 20.

    Jia FYue MChandra Det al. Taurine is a potent activator of extrasynaptic GABAA receptors in the thalamus. J Neurosci. 2008;28(1):106115. PubMed doi:10.1523/JNEUROSCI.3996-07.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Da Silva LATromm CBBom KFet al. Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab. 2013;39(1):101104. PubMed doi:10.1139/apnm-2012-0229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Ghandforoush-Sattari MMashayekhi SKrishna CVThompson JPRoutledge PA. Pharmacokinetics of oral taurine in healthy volunteers. J Amino Acids. 2010;2010:346237. PubMed doi:10.4061/2010/346237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Arnaud MJWelsch C. Theophylline and caffeine metabolism in man. In: Reitbrock NWoodcock BGStaib AH eds. Theophylline and Other Methylxanthines. Zurich, Switzerland: Friedr. Vieweg and Sons; 1982:135148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Fitzsimons MDawson BWare DWilkinson A. Cycling and running tests of repeated sprint ability. Aust J Sci Med Sport. 1993;25:8287.

    • Search Google Scholar
    • Export Citation
  • 25.

    Batterham AMHopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1:5057. PubMed doi:10.1123/ijspp.1.1.50

  • 26.

    Huxtable JR. Physiological actions of taurine. Physiol Rev. 1992;72:101163. PubMed

  • 27.

    Matsuzaki YMiyazaki TMiyakawa SBouscarel BIkegami TTanaka N. Decreased taurine concentration in skeletal muscles after exercise for various times. Med Sci Sports Exerc. 2002;34:793797. PubMed doi:10.1097/00005768-200205000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Westerblad HAllen DG. Recent advances in the understanding of skeletal muscle fatigue. Curr Opin Rheumatol. 2002;14:648652. PubMed doi:10.1097/00002281-200211000-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tallis JHiggins MFCox VMDuncan MJJames RS. Does a physiological concentration of taurine increase acute muscle power output, time to fatigue, and recovery in isolated mouse soleus (slow) muscle with or without the presence of caffeine? Can J Physiol Pharmacol. 2014;92(1):4249. PubMed doi:10.1139/cjpp-2013-0195

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cuisinier CDe Welle JMVerbeeck RKet al. Role of taurine in osmoregulation during endurance exercise. Eur J Appl Physiol. 2002;87(6):489495. PubMed doi:10.1007/s00421-002-0679-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 192 192 76
Full Text Views 27 27 1
PDF Downloads 4 4 0
Altmetric Badge
PubMed
Google Scholar
Cited By