Validation of a Maximal Incremental Skating Test Performed on a Slide Board: Comparison With Treadmill Skating

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To investigate the criterion validity of a maximal incremental skating test performed on a slide board (SB). Methods: Twelve subelite speed skaters performed a maximal skating test on a treadmill and on a SB. Gas exchange threshold (GET), respiratory compensation point (RCP), and maximal variables were determined. Results: Oxygen uptake (V˙O2) (31.0 ± 3.2 and 31.4 ± 4.1 mL·min−1·kg−1), percentage of maximal V˙O2 (V˙O2max) (66.3 ± 4 and 67.7 ± 7.1%), HR (153 ± 14 and 150 ±12 bpm), and ventilation (59.8 ± 11.8 and 57.0 ± 10.7 L·min−1) at GET, and V˙O2 (42.5 ± 4.4 and 42.9 ± 4.8 mL·min−1·kg−1), percentage of V˙O2max (91.1 ± 3.3 and 92.4 ± 2.1%), heart rate (HR) (178 ± 9 and 178 ± 6 bpm), and ventilation (96.5 ± 19.2 and 92.1 ± 12.7 L·min−1) at RCP were not different between skating on a treadmill and on a SB. V˙O2max (46.7 ± 4.4 vs 46.4 ±6.1 mL·min−1·kg−1) and maximal HR (195 ± 6 vs 196 ± 10 bpm) were not significantly different and correlated (r = .80 and r = .87, respectively; P < .05) between the treadmill and SB. V˙O2 at GET, RCP, and V˙O2max obtained on a SB were correlated (r > .8) with athletes’ best times on 1500 m. Conclusions: The incremental skating test on a SB was capable to distinguish maximal (V˙O2 and HR) and submaximal (V˙O2, % V˙O2max, HR, and ventilation) parameters known to determine endurance performance. Therefore, the SB test can be considered as a specific and practical alternative to evaluate speed skaters.

The authors are with the Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.

Piucco (tatianepiucco@yahoo.com.br) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    De Koning JJBakker FCde Groot Gvan Ingen Schenau GJ. Longitudinal development of young talented speed skaters: physiological and anthropometric aspects. J Appl Physiol. 1994;77:23112317. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Foster CRundell KWSnyder ACet al. Evidence for restricted muscle blood flow during speed skating. Med Sci Sports Exerc. 1999;31:14331440. PubMed doi:10.1097/00005768-199910000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rundell KW. Compromised oxygen uptake in speed skaters during treadmill in-line skating. Med Sci Sports Exerc. 1996;28:120127. PubMed doi:10.1097/00005768-199601000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Snyder ACO’Hagan KPClifford PSHoffman MDFoster C. Exercise responses to in-line skating: comparisons to running and cycling. Int J Sports Med. 1993;14(1):3842. PubMed doi:10.1055/s-2007-1021143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Krieg AMeyer TClas SKindermann W. Characteristics of inline speed skating-Incremental tests and effect of drafting. Int J Sports Med. 1996;27(10):818823. doi:10.1055/s-2005-872967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Kandou TWHoutman ILvd Bol Ede Boer RWde Groot Gvan Ingen Schenau GJ. Comparison of physiology and biomechanics of speed skating with cycling and with skateboard exercise. Can J Sport Sci. 1987;12:3136. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Foster CThompson NNSynder AC. Ergometric studies with speed skaters: evolution of laboratory methods. J Strength Cond Res. 1993;7:193200. doi:10.1519/00124278-199311000-00001

    • Search Google Scholar
    • Export Citation
  • 8.

    De Boer RWEttema GJFaessen BGet al. Specific characteristics of speed skating: implications for summer training. Med Sci Sports Exerc. 1987;19(5):504510. PubMed doi:10.1249/00005768-198710000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nobes KJMontgomery DLPearsall DJTurcotte RALefebvre RWhittom F. A comparison of skating economy on-ice and on the skating treadmill. Can J Appl Physiol. 2003;28(1):111. PubMed doi:10.1139/h03-001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hoffman MDJones GMBota BMandli MClifford PS. Inline skating: physiological responses and comparison with roller skiing. Int J Sports Med. 1992;13(2): 137144. PubMed doi:10.1055/s-2007-1021245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Rundell KWPripstein LP. Physiological responses of speed skaters to treadmill low walking and cycle ergometry. Int J Sports Med. 1995;16(5):304308. PubMed doi:10.1055/s-2007-973010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Piucco TO’Connell JStefanyshyn Dde Lucas RD. Incremental testing design on slide board for speed skaters: comparison between two different protocols. J Strength Cond Res. 2016; 30(11):31163121. PubMed doi:10.1519/JSC.0000000000001392

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    De Pauw KRoelands BCheung SSde Geus BRietjens GMeeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Piucco Tdos Santos SGde Lucas RDDias JA. A novel incremental slide board test for speed skaters: reliability analysis and comparison with a cycling test. Apunts Med Esport. 2015;50(186):5763. doi:10.1016/j.apunts.2015.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Keir DAFontana FYRobertson TCet al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):19321940. PubMed doi:10.1249/MSS.0000000000000613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Beaver WLWasserman KWhipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1985;60(6):20202027. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Whipp BJDavis JAWasserman K. Ventilatory control of the fisocapnic buffering region in rapidly-incremental exercise. Respir Physiol. 1989;76(3):357367. PubMed doi:10.1016/0034-5687(89)90076-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kuipers HVerstappen FTJKeizer HAGeurten Pvan Kranenburg G. Variability of aerobic performance in laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197201. PubMed doi:10.1055/s-2008-1025839

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Earlbaum Associates; 1988.

  • 21.

    van Ingen Schenau GJBakker FCde Groot Gde Koning JJ. Supramaximal cycle tests do not detect seasonal progression in performance in groups of elite speed skaters. Eur Appl Physiol. 1992;64:119134. PubMed

    • Search Google Scholar
    • Export Citation
  • 22.

    Foster CGreen MASnyder ACThompson NN. Physiological responses during simulated competition. Med Sci Sports Exerc. 1993;25(7):877882. PubMed doi:10.1249/00005768-199307000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Foster CDe Koning JJHettinga Fet al. Pattern of energy expenditure during simulated competition. Med Sci Sports Exerc. 2003;35(5):826831. PubMed doi:10.1249/01.MSS.0000065001.17658.68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Leone MLéger LALarivière GComtois AS. An on ice aerobic maximal multistage shuttle skate test for elite adolescent hockey players. Int J Sports Med. 2007;28:823828. doi:10.1055/s-2007-964986

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Petrella NJMontelpare WJNystrom MPlyley MFaught BE. Validation of the FAST skating protocol to predict aerobic power in ice hockey players. Appl Physiol Nutr Metab. 2007;32(4):693700. PubMed doi:10.1139/H07-057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hawkins MNRaven PBSnell PGStray-Gundersen JLevine BD. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc. 2007;39:103107. PubMed doi:10.1249/01.mss.0000241641.75101.64

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    De Boer RWVos EHutter Wvan Ingen Schenau GJ. Physiological and biomechanical comparison of roller skating and speed skating on ice. Eur J Appl Physiol. 1987;56(5):562569. doi:10.1007/BF00635371

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gladden LB. Muscle as a consumer of lactate. Med Sci Sports Exerc. 2000;32(4):764771. PubMed doi:10.1097/00005768-200004000-00008

  • 29.

    Boone JBarstow TJCelie BPrieur FBourgois J. Oxygenation, muscle activation and pulmonary VO2 to incremental ramp exercise: influence of aerobic fitness. Appl Physiol Nutr Metab. 2016;41(1):5562. PubMed doi:10.1139/apnm-2015-0261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Basset FABoulay MR. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur J Appl Physiol. 2000;81(3):214221. PubMed doi:10.1007/s004210050033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Duchateau JSemmler JGEnoka RM. Training adaptations in the behavior of human motor units. J Appl Physiol. 2006;101:17661775.PubMed doi:10.1152/japplphysiol.00543.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Konings MJElferink-Gemser MTStoter IKvan der Meer DOtten EHettinga FJ. Performance characteristics of long-track speed skaters: a literature review. Sports Med. 2015;45(4):505516. PubMed doi:10.1007/s40279-014-0298-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hettinga FJKonings MJCooper CE. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front Physiol. 2016;7:619. PubMed doi:10.3389/fphys.2016.00619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 42 42 14
Full Text Views 1 1 1
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar