Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To analyze the relationship between movement velocity and relative load (%1RM) in the pull-up exercise (PU) and to determine the pattern of repetition-velocity loss during a single set to failure in pulling one’s own body mass. Methods: Fifty-two men (age = 26.5 ± 3.9 y, body mass = 74.3 ± 7.2 kg) performed a first evaluation (T1) consisting of an 1-repetition-maximum test (1RM) and a test of maximum number of repetitions to failure pulling one’s own body mass (MNR) in the PU exercise. Thirty-nine subjects performed both tests on a second occasion (T2) following 12 wk of training. Results: The authors observed a strong relationship between mean propulsive velocity (MPV) and %1RM (r = −.96). Mean velocity attained with 1RM load (V1RM) was 0.20 ± 0.05 m·s−1, and it influenced the MPV attained with each %1RM. Although 1RM increased by 3.4% from T1 to T2, the relationship between MPV and %1RM, and V1RM, remained stable. The authors also confirmed stability in the V1RM regardless of individual relative strength. The authors found a strong relationship between percentage of velocity loss and percentage of performed repetitions (R2 = .88), which remained stable despite a 15% increase in MNR. Conclusions: Monitoring repetition velocity allows estimation of the %1RM used as soon as the first repetition with a given load is performed, and the number of repetitions remaining in reserve when a given percentage of velocity loss is achieved during a PU exercise set.

The authors are with the Physical and Athletic Performance Research Center, Pablo de Olavide University, Seville, Spain.

Sánchez-Moreno (msanmor@hotmail.com) is corresponding author.
  • 1.

    Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34:663679. PubMed doi:10.2165/00007256-200434100-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36:674688. PubMed doi:10.1249/01.MSS.0000121945.36635.61

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Tan B. Manipulating resistance training program variables to optimize maximum strength in men: a review. J Strength Cond Res. 1999;13:289304. doi:10.1519/00124278-199908000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    González-Badillo J, Marques M, Sánchez-Medina L. The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet. 2011;29:1519. doi:10.2478/v10078-011-0053-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347352. doi:10.1055/s-0030-1248333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pallarés JG, Sánchez-Medina L, Pérez CE, De La Cruz-Sánchez E, Mora-Rodriguez R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J Sports Sci. 2014;32:11651175. doi:10.1080/02640414.2014.889844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sánchez-Medina L, González-Badillo J, Pérez C, Pallarés J. Velocity-and power-load relationships of the bench pull vs. Bench press exercises. Int J Sports Med. 2014;35:209216. PubMed doi:10.1055/s-0033-1351252

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bird SP, Tarpenning KM, Marino FE. Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 2005;35:841851. PubMed doi:10.2165/00007256-200535100-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    González-Badillo J, Yáñez-García JM, Mora-Custodio R, Rodríguez-Rosell D. Velocity loss as a variable for monitoring resistance exercise. Int J Sports Med. 2017;38:217225. PubMed doi:10.1055/s-0042-120324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sanchez-Medina L, González-Badillo J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43:17251734. PubMed doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    González-Badillo J, Rodríguez-Rosell D, Sánchez-Medina L, et al. Short-term recovery following resistance exercise leading or not to failure. Int J Sports Med. 2016;37:295304. PubMed doi:10.1055/s-0035-1564254

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin Physiol Funct Imaging. 2017;37(6):630639. PubMed doi:10.1111/cpf.12348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ronai P, Scibek E. The pull-up. Strength Cond J. 2014;36:8890. doi:10.1519/SSC.0000000000000052

  • 14.

    Baker DG, Newton RU. An analysis of the ratio and relationship between upper body pressing and pulling strength. J Strength Cond Res. 2004;18:594598. PubMed doi:10.1519/R-12382.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Vanderburgh PM, Edmonds T. The effect of experimental alterations in excess mass on pull-up performance in fit young men. J Strength Cond Res. 1997;11:230233. doi:10.1519/00124278-199711000-00005

    • Search Google Scholar
    • Export Citation
  • 16.

    García-Pallarés J, Sánchez-Medina L, Carrasco L, Díaz A, Izquierdo M. Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. Eur J Appl Physiol. 2009;106:629638. doi:10.1007/s00421-009-1061-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Garcia-Pallares J, Sanchez-Medina L, Perez CE, Izquierdo-Gabarren M, Izquierdo M. Physiological effects of tapering and detraining in world-class kayakers. Med Sci Sports Exerc. 2010;42:12091214. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Grant S, Hynes V, Whittaker A, Aitchison T. Anthropometric, strength, endurance and flexibility characteristics of elite and recreational climbers. J Sports Sci. 1996;14:301309. PubMed doi:10.1080/02640419608727715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    McKean MR, Burkett BJ. The influence of upper-body strength on flat-water sprint kayak performance in elite athletes. Int J Sports Physiol Perform. 2014;9:707714. PubMed doi:10.1123/ijspp.2013-0301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Youdas JW, Amundson CL, Cicero KS, Hahn JJ, Harezlak DT, Hollman JH. Surface electromyographic activation patterns and elbow joint motion during a pull-up, chin-up, or perfect-pullup™ rotational exercise. J Strength Cond Res. 2010;24:34043414. PubMed doi:10.1519/JSC.0b013e3181f1598c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Flanagan S, Vanderburgh P, Borchers S, Kohstall C. Training college-age women to perform the pull-up exercise. Res Q Exerc Sport. 2003;74:5259. PubMed doi:10.1080/02701367.2003.10609064

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Antinori F, Felici F, Figura F, Marchetti M, Ricci B. Joint moments and work in pull-ups. J Sport Med Phys Fitness. 1988;28:132137. PubMed

    • Search Google Scholar
    • Export Citation
  • 23.

    Ricci B, Figura F, Felici F, Marchetti M. Comparison of male and female functional capacity in pull-ups. J Sport Med Phys Fitness. 1988;28:168175. PubMed

    • Search Google Scholar
    • Export Citation
  • 24.

    Doma K, Deakin GB, Ness KF. Kinematic and electromyographic comparisons between chin-ups and lat-pull down exercises. Sports Biomech. 2013;12:302313. PubMed doi:10.1080/14763141.2012.760204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Chandler T, Ware J, Mayhew J. Relationship of lat-pull repetitions and pull-ups to 1-RM lat-pull strength in male athletes. J Hum Movement Stud. 2001;41:2538.

    • Search Google Scholar
    • Export Citation
  • 26.

    Halet KA, Mayhew JL, Murphy C, Fanthorpe J. Relationship of 1 repetition maximum lat-pull to pull-up and lat-pull repetitions in elite collegiate women swimmers. J Strength Cond Res. 2009;23:14961502. PubMed doi:10.1519/JSC.0b013e3181b338ec

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Johnson D, Lynch J, Nash K, Cygan J, Mayhew JL. Relationship of lat-pull repetitions and pull-ups to maximal lat-pull and pull-up strength in men and women. J Strength Cond Res. 2009;23:10221028. PubMed doi:10.1519/JSC.0b013e3181a2d7f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sánchez-Moreno M, Pareja-Blanco F, Díaz-Cueli D, González-Badillo J. Determinant factors of pull up performance in trained athletes. J Sport Med Phys Fitness. 2016;56:825833. PubMed

    • Search Google Scholar
    • Export Citation
  • 29.

    Trappe SW, Pearson DR. Effects of weight assisted dry-land strength training on swimming performance. J Strength Cond Res. 1994;8:209213. doi:10.1519/00124278-199411000-00001

    • Search Google Scholar
    • Export Citation
  • 30.

    Sanchez-Medina L, Perez C, Gonzalez-Badillo J. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31:123129. PubMed doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Izquierdo M, González-Badillo J, Häkkinen K, et al. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med. 2006;27:718724. PubMed doi:10.1055/s-2005-872825

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1300 1140 68
Full Text Views 46 42 5
PDF Downloads 30 29 2