Optimizing the Team for Required Power During Track-Cycling Team Pursuit

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Since the aim of the men’s team pursuit in time-trial track cycling is to accomplish a distance of 4000 m as fast as possible, optimizing aerodynamic drag can contribute to achieving this goal. The aim of this study was to determine the drafting effect in second, third, and fourth position during the team pursuit in track cycling as a function of the team members’ individual frontal areas in order to minimize the required power. Method: Eight experienced track cyclists of the Dutch national selection performed 39 trials of 3 km in different teams of 4 cyclists at a constant velocity of 15.75 m/s. Frontal projected areas were determined, and together with field-derived drag coefficients for all 4 positions, the relationships between frontal areas of team members and drag fractions were estimated using generalized estimating equations. Results: The frontal area of both the cyclist directly in front of the drafter and the drafter himself turned out to be significant determinants of the drag fraction at the drafter’s position (P < .05) for all 3 drafting positions. Predicted required power for individuals in drafting positions differed up to 35 W depending on team composition. For a team, a maximal difference in team efficiency (1.2%) exists by selecting cyclists in a specific sequence. Conclusion: Estimating required power for a specific team composition gives insight into differences in team efficiency for the team pursuit. Furthermore, required power for individual team members ranges substantially depending on team composition.

The authors are with Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

De Koning (j.j.de.koning@vu.nl) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Lukes RAChin SBHaake SJ. The understanding and development of cycling aerodynamics. Sports Eng. 2005;8:5974. doi:10.1007/BF02844004

  • 2.

    Martin JCMilliken DLCobb JEMcFadden KLCoggan AR. Validation of a mathematical model for road cycling power. J Appl Biomech. 1998;14:276291. PubMed doi:10.1123/jab.14.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Broker JPKyle CRBurke ER. Racing cyclist power requirements in the 4000-m individual and team pursuits. Med Sci Sports Exerc. 1999;31(11):16771685. PubMed doi:10.1097/00005768-199911000-00026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Doval PN. Aerodynamic Analysis and Drag Coefficient Evaluation of Time-Trial Bicycle Riders. [Theses and Dissertations]. 2012:Paper 28.

  • 5.

    Trenchard H. The complex dynamics of bicycle pelotons. 2012. http://arxiv.org/abs/1206.0816.

    • Export Citation
  • 6.

    Basset DRKyle CRPassfield LBroker JPBurke ER. Comparing cycling world hour records, 1967–1996: modeling with empirical data. Med Sci Sports Exerc. 1999;31(11):16651676. doi:10.1097/00005768-199911000-00025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Garcia-López JRodriquez-Marroyo JAJuneau CPeleteiro JMartinez ACVilla JG. Reference values and improvement of aerodynamic drag in professional cyclists. J Sports Sci. 2008;26(3):277286. doi:10.1080/02640410701501697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Underwood LJermya M. Mathematical model of track cycling: the individual pursuit. Proc Eng. 2010;2:32173222. doi:10.1016/j.proeng.2010.04.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Zdravkovic MMAshcroft MWChisholm SJHicks N. Effect of Cyclist’s Posture and Vicinity of Another Cyclist on Aerodynamic Drag. The Engineering of Sport. Rotterdam, The Netherlands: Balkema; 1996.

  • 10.

    Defraeye TBlocken BKoninckx EHespel PVerboven PNicolai BCarmeliet J. Cyclist drag in team pursuit: influence of cyclist sequence, stature and arm spacing. J Biomech Eng. 2014;136(1):011005. PubMed doi:10.1115/1.4025792

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Edwards AGByrnes WC. Aerodynamic characteristics as determinants of the drafting effect in cycling. Med Sci Sports Exerc. 2007;39(1):170176. PubMed doi:10.1249/01.mss.0000239400.85955.12

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Debraux PGrappe FManolova AVBertucci W. Aerodynamic drag in cycling: methods of assessment. Sports Biomech. 2011;10(3):197218. PubMed doi:10.1080/14763141.2011.592209

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Debraux PBertucci WManolova AVRogier SLodini A. New method to estimate the cycling frontal area. Int J Sports Med. 2009;30:266272. PubMed doi:10.1055/s-0028-1105940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Olds TOlive S. Methodological considerations in the determination of projected frontal area in cyclists. J Sports Sci. 1999;17:335345. PubMed doi:10.1080/026404199366046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Martin JCGardner ASBarras MMartin DT. Modeling sprint cycling using field-derived parameters and forward integration. Med Sci Sports Exerc. 2006;38(3):592597. PubMed doi:10.1249/01.mss.0000193560.34022.04

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Underwood LJermya M. Optimal handlebar position for track cyclists. Sports Eng. 2013;16:8190. doi:10.1007/s12283-013-0111-5

  • 17.

    Capelli CRosa GButti FFerretti GVeicsteinas ADi Prampero PE. Energy cost and efficiency of riding aerodynamic bicycles. Eur J Appl Physiol. 1993;67:144149. doi:10.1007/BF00376658

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Di Prampero PE. Cycling on earth, in space, on the moon. Eur J Appl Physiol. 2000;82:345360. PubMed doi:10.1007/s004210000220

  • 19.

    Di Prampero PECortili GMognoni PSaibene F. Equation of motion of a cyclist. J Appl Physiol. 1979;47:201206. PubMed

  • 20.

    Lim ACHomestead RPEdwards AGCarver TCKram RByrnes WC. Measuring changes in aerodynamic/rolling resistances by cycle-mounted power meters. Med Sci Sports Exerc. 2011;43(5):853860. PubMed doi:10.1249/MSS.0b013e3181fcb140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Pugh LG. The relation of oxygen intake and speed in competition cycling and comparative observations on the bicycle ergometer. J Physiol. 1974;241:795808. PubMed doi:10.1113/jphysiol.1974.sp010685

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Liang KYZeger SL. Regression analysis for correlated data. Ann Rev Pub Health. 1993;14:4368. doi:10.1146/annurev.pu.14.050193.000355

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 74 74 22
Full Text Views 3 3 1
PDF Downloads 2 2 2
Altmetric Badge
PubMed
Google Scholar