Purpose:

To investigate the muscle-activation patterns and coactivation with the support of kinematics in some of the world’s best breaststrokers and identify performance discriminants related to national elites at maximal effort.

Methods:

Surface electromyography was collected in 8 muscles from 4 world-class (including 2 world champions) and 4 national elite breaststroke swimmers during a 25-m breaststroke at maximal effort.

Results:

World-class spent less time during the leg recovery (P = .043), began this phase with a smaller knee angle (154.6° vs 161.8°), and had a higher median velocity of 0.18 m/s during the leg glide than national elites. Compared with national elites, world-class swimmers showed a difference in the muscle-activation patterns for all 8 muscles. In the leg-propulsion phase, there was less triceps brachii activation (1 swimmer 6% vs median 23.0% [8.8]). In the leg-glide phase, there was activation in rectus femoris and gastrocnemius during the beginning of this phase (all world-class vs only 1 national elite) and a longer activation in pectoralis major (world champions 71% [0.5] vs 50.0 [4.3]) (propulsive phase of the arms). In the leg-recovery phase, there was more activation in biceps femoris (50.0% [15.0] vs 20.0% [14.0]) and a later and quicker activation in tibialis anterior (40.0% [7.8] vs 52.0% [6.0]). In the stroke cycle, there was no coactivation in tibialis anterior and gastrocnemius for world champions.

Conclusion:

These components are important performance discriminants. They can be used to improve muscle-activation patterns and kinematics through the different breaststroke phases. Furthermore, they can be used as focus points for teaching breaststroke to beginners.