Etiology of Neuromuscular Fatigue After Repeated Sprints Depends on Exercise Modality

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00


To compare neuromuscular fatigue induced by repeated-sprint running vs cycling.


Eleven active male participants performed 2 repeated-maximal-sprint protocols (5×6 s, 24-s rest periods, 4 sets, 3 min between sets), 1 in running (treadmill) and 1 in cycling (cycle ergometer). Neuromuscular function, evaluated before (PRE); 30 s after the first (S1), the second (S2), and the last set (LAST); and 5 min after the last set (POST5) determined the knee-extensor maximal voluntary torque (MVC); voluntary activation (VA); single-twitch (Tw), high- (Db100), and low- (Db10) frequency torque; and maximal muscle compound action potential (M-wave) amplitude and duration of vastus lateralis.


Peak power output decreased from 14.6 ± 2.2 to 12.4 ± 2.5 W/kg in cycling (P < .01) and from 21.4 ± 2.6 to 15.2 ± 2.6 W/kg in running (P < .001). MVC declined significantly from S1 in running but only from LAST in cycling. VA decreased after S2 (~–7%, P < .05) and LAST (~–9%, P < .01) set in repeated-sprint running and did not change in cycling. Tw, Db100, and Db10/Db100 decreased to a similar extent in both protocols (all P < .001 post-LAST). Both protocols induced a similar level of peripheral fatigue (ie, low-frequency peripheral fatigue, no changes in M-wave characteristics), while underlying mechanisms probably differed. Central fatigue was found only after running.


Findings about neuromuscular fatigue resulting from RS cycling cannot be transferred to RS running.

The authors are with the Laboratory of Exercise Physiology, University of Lyon, Saint-Etienne, France.

Tomazin ( is corresponding author.