Click name to view affiliation
Objective measures of recovery from football match play could be useful for assessing athletes’ readiness to train, if sensitive to preceding match load.
To identify the sensitivity of countermovement-jump (CMJ) performance and concentration of salivary testosterone and cortisol relative to elite football match load.
CMJ performance and salivary hormones were measured in 18 elite football players before (27, 1 h) and after (0.5, 18, 42, 66, 90 h) 3 consecutive matches. Match load was determined via accelerometer-derived PlayerLoad and divided into tertiles. Sensitivity of CMJ performance and hormone concentrations to match load was quantified with t statistics and magnitude-based inferences (change in mean as % ± 90% confidence interval) derived with a linear mixed model.
Jump height was reduced in medium and high load at 0.5 h (10% ± 7% and 16% ± 8%) and 18 h (7% ± 4% and 9% ± 5%) postmatch. There was a 12% ± 7% reduction in ratio of flight time to contraction time (FT:CT) in high load at 0.5 h post, with reductions in medium and high load at 18 h. Reductions in FT:CT persisted at later postmatch time points than changes in jump height. Increased cortisol (range 55–165%) and testosterone (range 17–20%) were observed in all match loads at 0.5 h post, with individual variability thereafter.
Measures of CMJ performance and hormonal concentrations were sensitive to levels of A League football match load. Although jump height was reduced immediately postmatch, FT:CT provided a more sensitive measure of recovery. Football match play induces an acute hormonal response with substantial individual variability thereafter.
Rowell, Aughey, Hopkins, and Stewart are with the Inst of Sport, Exercise, and Active Living, Victoria University, Melbourne, Australia. Cormack is with the School of Exercise Science, Australian Catholic University, Melbourne, Australia.