Validity of Various Methods for Determining Velocity, Force, and Power in the Back Squat

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose:

To examine the validity of 2 kinematic systems for assessing mean velocity (MV), peak velocity (PV), mean force (MF), peak force (PF), mean power (MP), and peak power (PP) during the full-depth free-weight back squat performed with maximal concentric effort.

Methods:

Ten strength-trained men (26.1 ± 3.0 y, 1.81 ± 0.07 m, 82.0 ± 10.6 kg) performed three 1-repetition-maximum (1RM) trials on 3 separate days, encompassing lifts performed at 6 relative intensities including 20%, 40%, 60%, 80%, 90%, and 100% of 1RM. Each repetition was simultaneously recorded by a PUSH band and commercial linear position transducer (LPT) (GymAware [GYM]) and compared with measurements collected by a laboratory-based testing device consisting of 4 LPTs and a force plate.

Results:

Trials 2 and 3 were used for validity analyses. Combining all 120 repetitions indicated that the GYM was highly valid for assessing all criterion variables while the PUSH was only highly valid for estimations of PF (r = .94, CV = 5.4%, ES = 0.28, SEE = 135.5 N). At each relative intensity, the GYM was highly valid for assessing all criterion variables except for PP at 20% (ES = 0.81) and 40% (ES = 0.67) of 1RM. Moreover, the PUSH was only able to accurately estimate PF across all relative intensities (r = .92–.98, CV = 4.0–8.3%, ES = 0.04–0.26, SEE = 79.8–213.1 N).

Conclusions:

PUSH accuracy for determining MV, PV, MF, MP, and PP across all 6 relative intensities was questionable for the back squat, yet the GYM was highly valid at assessing all criterion variables, with some caution given to estimations of MP and PP performed at lighter loads.

Banyard is with the Centre for Exercise and Sport Science Research; Nosaka, the School of Exercise and Health Sciences; and Haff, the Dept of Strength & Conditioning, Edith Cowan University, Joondalup, WA, Australia. Sato is with the Dept of Exercise and Sport Science, East Tennessee State University, Johnson City, TN.

Banyard (h.banyard@ecu.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 353 353 118
Full Text Views 60 60 12
PDF Downloads 40 40 12
Altmetric Badge
PubMed
Google Scholar
Cited By