Improvement of Performance and Reduction of Fatigue With Low-Level Laser Therapy in Competitive Cyclists

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Evidence indicates that low-level laser therapy (LLLT) minimizes fatigue effects on muscle performance. However, the ideal LLLT dosage to improve athletes’performance during sports activities such as cycling is still unclear. Therefore, the goal of this study was to investigate the effects of different LLLT dosages on cyclists’performance in time-to-exhaustion tests. In addition, the effects of LLLT on the frequency content of the EMG signals to assess fatigue mechanisms were examined. Twenty male competitive cyclists participated in a crossover, randomized, double-blind, placebo-controlled trial. They performed an incremental cycling test to exhaustion (on day 1) followed by 4 time-to-exhaustion tests (on days 2–5) at their individual maximal power output. Before each time-to-exhaustion test, different dosages of LLLT (135, 270, and 405 J/thigh, respectively) or placebo were applied at the quadriceps muscle bilaterally. Power output and muscle activation from both lower limbs were recorded throughout the tests. Increased performance in time-to-exhaustion tests was observed with the LLLT-135 J (∼22 s; P < .01), LLLT-270 J (∼13 s; P = .03), and LLLT-405 J (∼13 s; P = .02) compared to placebo (149 ± 23 s). Although LLLT-270 J and LLLT-405 J did not show significant differences in muscle activation compared with placebo, LLLT-135 J led to an increased high-frequency content compared with placebo in both limbs at the end of the exhaustion test (P ≤ .03). In conclusion, LLLT increased time to exhaustion in competitive cyclists, suggesting this intervention as a possible nonpharmacological ergogenic agent in cycling. Among the different dosages, LLLT-135 J seems to promote the best effects.

Lanferdini, Klein, and Vaz are with the School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. Bini is with La Trobe University, Bundoora, VIC, Australia. Baroni is with the Dept of Physical Therapy, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil. Carpes is with Neuromechanical Laboratory, Federal University of Pampa, Uruguaiana, Brazil.

Vaz (marco.vaz@ufrgs.br) is corresponding author.
  • 1.

    Mester E, Szende B, Gartner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl). 1968;9(5):621626. PubMed

  • 2.

    Minatel DG, Frade MA, Franca SC, Enwemeka CS. Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med. 2009;41(6):433441. PubMed doi:10.1002/lsm.20789

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Oliveira FS, Pinfildi CE, Parizoto NA, et al. Effect of low level laser therapy (830 nm) with different therapy regimes on the process of tissue repair in partial lesion calcaneous tendon. Lasers Surg Med. 2009;41(4):271276. PubMed doi:10.1002/lsm.20760

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cressoni MD, Dib Giusti HH, Casarotto RA, Anaruma CA. The effects of a 785-nm AlGaInP laser on the regeneration of rat anterior tibialis muscle after surgically-induced injury. Photomed Laser Surg. 2008;26(5):461466. PubMed doi:10.1089/pho.2007.2150

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Rochkind S, Geuna S, Shainberg A. Chapter 25: phototherapy in peripheral nerve injury: effects on muscle preservation and nerve regeneration. Int Rev Neurobiol. 2009;87:445464. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet. 2009;374(9705):18971908. PubMed doi:10.1016/S0140-6736(09)61522-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lopes-Martins RA, Albertini R, Martins PS, Bjordal JM, Faria Neto HC. Spontaneous effects of low-level laser therapy (650 nm) in acute inflammatory mouse pleurisy induced by carrageenan. Photomed Laser Surg. 2005;23(4):377381. PubMed doi:10.1089/pho.2005.23.377

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lopes-Martins RA, Marcos RL, Leonardo PS, et al. Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol. 2006;101(1):283288. PubMed doi:10.1152/japplphysiol.01318.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Komatsu M, Kubo T, Kogure S, Matsuda Y, Watanabe K. Effects of 808 nm low-power laser irradiation on the muscle contraction of frog gastrocnemius. Lasers Surg Med. 2008;40(8):576583. PubMed doi:10.1002/lsm.20665

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ferraresi C, de Sousa MV, Huang YY, Bagnato VS, Parizotto NA, Hamblin MR. Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci. 2015;30(4):12591267. PubMed doi:10.1007/s10103-015-1723-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Xu X, Zhao X, Liu TC, Pan H. Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomed Laser Surg. 2008;26(3):197202. PubMed doi:10.1089/pho.2007.2125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Leal Junior EC, Lopes-Martins RA, Dalan F, et al. Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg. 2008;26(5):419424. PubMed doi:10.1089/pho.2007.2160

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Vanin AA, Miranda EF, Machado CS, et al. What is the best moment to apply phototherapy when associated to a strength training program?: a randomized, double-blinded, placebo-controlled trial: phototherapy in association to strength training. Lasers Med Sci. 2016;31(8):15551564. PubMed doi:10.1007/s10103-016-2015-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Leal Junior EC, Lopes-Martins RA, Frigo L, et al. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther. 2010;40(8):524532. PubMed doi:10.2519/jospt.2010.3294

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Leal Junior EC, Lopes-Martins RA, Rossi RP, et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41(8):572577. PubMed doi:10.1002/lsm.20810

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Leal Junior EC, Lopes-Martins RA, Vanin AA, et al. Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci. 2009;24(3):425431. PubMed doi:10.1007/s10103-008-0592-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    de Almeida P, Lopes-Martins RA, De Marchi T, et al. Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci. 2012;27(2):453458. PubMed doi:10.1007/s10103-011-0957-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Miranda EF, Leal-Junior EC, Marchetti PH, Dal Corso S. Acute effects of light emitting diodes therapy (LEDT) in muscle function during isometric exercise in patients with chronic obstructive pulmonary disease: preliminary results of a randomized controlled trial. Lasers Med Sci. 2014;29(1):359365. PubMed doi:10.1007/s10103-013-1359-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kelencz CA, Munoz IS, Amorim CF, Nicolau RA. Effect of low-power gallium-aluminum-arsenium noncoherent light (640 nm) on muscle activity: a clinical study. Photomed Laser Surg. 2010;28(5):647652. PubMed doi:10.1089/pho.2008.2467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Baroni BM, Leal Junior EC, De Marchi T, Lopes LA, Salvador M, Vaz MA. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol. 2010;110(4):789796. PubMed doi:10.1007/s00421-010-1562-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA. Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg. 2010;28(5):653658. PubMed doi:10.1089/pho.2009.2688

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    da Silva Alves MA, Pinfildi CE, Neto LN, Lourenco RP, de Azevedo PH, Dourado VZ. Acute effects of low-level laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med Sci. 2014;29(6):19451951. PubMed doi:10.1007/s10103-014-1595-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Leal Junior EC, Baroni BM, Rossi RP, et al. A fototerapia com diodo emissor de luz (LEDT) aplicada pré-exercício inibe a peroxição lipídica em atletas após exercício de alta intensidade: um estudo preliminar. Rev Bras Med Esporte. 2011;17(1):812. doi:10.1590/S1517-86922011000100001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Leal Junior EC, de Godoi V, Mancalossi JL, et al. Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results. Lasers Med Sci. 2011;26(4):493501. PubMed doi:10.1007/s10103-010-0866-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Leal Junior EC, Lopes-Martins RA, Baroni BM, et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci. 2009;24(6):857863. PubMed doi:10.1007/s10103-008-0633-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci. 2012;27(1):231236. PubMed doi:10.1007/s10103-011-0955-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Malta Ede S, De Poli RA, Brisola GM, et al. Acute LED irradiation does not change the anaerobic capacity and time to exhaustion during a high-intensity running effort: a double-blind, crossover, and placebo-controlled study: effects of LED irradiation on anaerobic capacity and performance in running. Lasers Med Sci. 2016;31(7):14731480. PubMed doi:10.1007/s10103-016-2011-y

    • Search Google Scholar
    • Export Citation
  • 28.

    Miranda EF, Vanin AA, Tomazoni SS, et al. Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train. 2016;51(2):129135. PubMed doi:10.4085/1062-6050-51.3.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Borsa PA, Larkin KA, True JM. Does phototherapy enhance skeletal muscle contractile function and postexercise recovery?: a systematic review. J Athl Train. 2013;48(1):5767. PubMed doi:10.4085/1062-6050-48.1.12

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. 2015;30(2):925939. PubMed doi:10.1007/s10103-013-1465-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Leal Junior EC, Lopes-Martins RA, Baroni BM, et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. 2009;27(4):617623. PubMed doi:10.1089/pho.2008.2350

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Albuquerque-Pontes GM, Vieira Rde P, Tomazoni SS, et al. Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci. 2015;30(1):5966. PubMed doi:10.1007/s10103-014-1616-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy—an update. Dose-Response. 2011;9(4):602618. PubMed doi:10.2203/dose-response.11-009.Hamblin

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Antonialli FC, De Marchi T, Tomazoni SS, et al. Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci. 2014;29(6):19671976. PubMed doi:10.1007/s10103-014-1611-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Priego-Quesada I, Bini RR, Diefenthaeler F, Carpes FP. Spectral properties of muscle activation during incremental cycling test. J Sci Cycling. 2015;4(1):713.

    • Search Google Scholar
    • Export Citation
  • 36.

    De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech. 1997;13(2):135163. doi:10.1123/jab.13.2.135

  • 37.

    Macdonald JH, Farina D, Marcora SM. Response of electromyographic variables during incremental and fatiguing cycling. Med Sci Sports Exerc. 2008;40(2):335344. PubMed doi:10.1249/mss.0b013e31815b491e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Cannon DT, Kolkhorst FW, Cipriani DJ. Electromyographic data do not support a progressive recruitment of muscle fibers during exercise exhibiting a VO2 slow component. J Physiol Anthropol. 2007;26(5):541546. PubMed doi:10.2114/jpa2.26.541

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Diefenthaeler F, Bini RR, Vaz MA. Frequency band analysis of muscle activation during cycling to exhaustion. Braz J Kinanthropometry Hum Perform. 2012;14(3):243253. doi:10.5007/1980-0037.2012v14n3p243

    • Search Google Scholar
    • Export Citation
  • 40.

    Dorel S, Drouet JM, Couturier A, Champoux Y, Hug F. Changes of pedaling technique and muscle coordination during an exhaustive exercise. Med Sci Sports Exerc. 2009;41(6):12771286. PubMed doi:10.1249/MSS.0b013e31819825f8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ansley L, Cangley P. Determinants of “optimal” cadence during cycling. Eur J Sports Sci. 2009;9(2):6185. doi:10.1080/17461390802684325

  • 42.

    Marfell-Jones M, Olds T, Stewart A, Carter L. International Standards for Anthropometric Assessment. Potchefstroom, South Africa: ISAK; 2006.

    • Search Google Scholar
    • Export Citation
  • 43.

    de Vey Mestdagh K. Personal perspective: in search of an optimum cycling posture. Appl Ergon. 1998;29(5):325334. PubMed doi:10.1016/S0003-6870(97)00080-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Davison RCR, Corbett J, Ansley L. Influence of temperature and protocol on the calibration of the Computrainer electromagnetically-braked cycling ergometer. Int Sport Med J. 2009;10(2):6676.

    • Search Google Scholar
    • Export Citation
  • 45.

    Baroni BM, Rodrigues R, Freire BB, Franke Rde A, Geremia JM, Vaz MA. Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol. 2015;115(3):639647. PubMed doi:10.1007/s00421-014-3055-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Merletti R, Botter A, Troiano A, Merlo E, Minetto MA. Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. Clin Biomech (Bristol, Avon). 2009;24(2):122134. doi:10.1016/j.clinbiomech.2008.08.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Wakeling JM. Spectral properties of the surface EMG can characterize motor unit recruitment strategies. J Appl Physiol. 2008;105(5):16761677. discussion 5. PubMed doi:10.1152/japplphysiol.zdg-8232-pcpcomm.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Pinto HD, Vanin AA, Miranda EF, et al. Photobiomodulation therapy (PBMT) improves performance and accelerates recovery of high-level rugby players in field test: a randomized, crossover, double-blind, placebo-controlled clinical study. J Strength Condition Res. 2016;30(12):33293338. doi:10.1519/JSC.0000000000001439

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Hepple RT. The role of O2 supply in muscle fatigue. Can J Appl Physiol. 2002;27(1):5669. PubMed doi:10.1139/h02-004

  • 50.

    Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose-Response. 2009;7(4):358383. PubMed doi:10.2203/dose-response.09-027.Hamblin

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    de Almeida P, Lopes-Martins RA, Tomazoni SS, et al. Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol. 2011;87(5):11591163. PubMed doi:10.1111/j.1751-1097.2011.00968.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Santos LA, Marcos RL, Tomazoni SS, et al. Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. Lasers Med Sci. 2014;29(5):16171626. PubMed doi:10.1007/s10103-014-1560-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Higashi RH, Toma RL, Tucci HT, et al. Effects of low-level laser therapy on biceps braquialis muscle fatigue in young women. Photomed Laser Surg. 2013;31(12):586594 PubMed. doi:10.1089/pho.2012.3388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    dos Santos Maciel T, Munoz IS, Nicolau RA, et al. Phototherapy effect on the muscular activity of regular physical activity practitioners. Lasers Med Sci. 2014;29(3):11451152. PubMed doi:10.1007/s10103-013-1481-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol. 2010;86(3):673680. PubMed doi:10.1111/j.1751-1097.2010.00732.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Ferraresi C, Kaippert B, Avci P, et al. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol. 2015;91(2):411416. PubMed doi:10.1111/php.12397

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M. Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med. 2000;27(5):427437. PubMed doi:10.1002/1096-9101(2000)27:5<427::AID-LSM1004>3.0.CO;2-A

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 437 437 15
Full Text Views 6 6 0
PDF Downloads 2 2 0