Sex Differences in World-Record Performance: The Influence of Sport Discipline and Competition Duration

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

The current review summarizes scientific knowledge concerning sex differences in world-record performance and the influence of sport discipline and competition duration. In addition, the way that physiological factors relate to sex dimorphism is discussed. While cultural factors played a major role in the rapid improvement of performance of women relative to men up until the 1990s, sex differences between the world’s best athletes in most events have remained relatively stable at approximately 8–12%. The exceptions are events in which upper-body power is a major contributor, where this difference is more than 12%, and ultraendurance swimming, where the gap is now less than 5%. The physiological advantages in men include a larger body size with more skeletal-muscle mass, a lower percentage of body fat, and greater maximal delivery of anaerobic and aerobic energy. The greater strength and anaerobic capacity in men normally disappear when normalized for fat-free body mass, whereas the higher hemoglobin concentrations lead to 5–10% greater maximal oxygen uptake in men with such normalization. The higher percentage of muscle mass in the upper body of men results in a particularly large sex difference in power production during upper-body exercise. While the exercise efficiency of men and women is usually similar, women have a better capacity to metabolize fat and demonstrate better hydrodynamics and more even pacing, which may be advantageous, in particular during long-lasting swimming competitions.

Sandbakk and Solli are with the Center for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway. Holmberg is with the Swedish Winter Sports Research Center, Mid Sweden University, Östersund, Sweden.

Sandbakk (Oyvind.sandbakk@ntnu.no) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    IOC. Factsheet: Women in the Olympic Movement. Lausanne, Switzerland: IOC; 2016.

  • 2.

    Tatem AJGuerra CAAtkinson PMHay SI. Athletics: momentous sprint at the 2156 Olympics? Nature. 2004;431(7008):525. PubMed doi:10.1038/431525a

  • 3.

    Whipp BJWard SA. Will women soon outrun men? Nature. 1992;355:25. PubMed doi:10.1038/355025a0

  • 4.

    Holden C. An everlasting gender gap? Science. 2004;305(5684):639640. PubMed doi:10.1126/science.305.5684.639

  • 5.

    Seiler SDe Koning JJFoster C. The fall and rise of the gender difference in elite anaerobic performance 1952–2006. Med Sci Sports Exerc. 2006;39(3):534540. doi:10.1249/01.mss.0000247005.17342.2b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Thibault VGuillaume MBerthelot Get al. Women and men in sport performance: the gender gap has not evolved since 1983. J Sports Sci Med. 2010;9(2):214223. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lepers RKnechtle BStapley PJ. Trends in triathlon performance: effects of sex and age. Sports Med. 2013;43(9):851863. PubMed doi:10.1007/s40279-013-0067-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sandbakk OEttema GLeirdal SHolmberg HC. Gender differences in the physiological responses and kinematic behaviour of elite sprint cross-country skiers. Eur J Appl Physiol. 2012;112(3):10871094. PubMed doi:10.1007/s00421-011-2063-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Zingg MAKarner-Rezek KRosemann TKnechtle BLepers RRust CA. Will women outrun men in ultra-marathon road races from 50 km to 1,000 km? Springerplus. 2014;3:97. PubMed doi:10.1186/2193-1801-3-97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Knechtle BValeri FNikolaidis PTZingg MARosemann TRust CA. Do women reduce the gap to men in ultra-marathon running? Springerplus. 2016;5(1):672. PubMed doi:10.1186/s40064-016-2326-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Knechtle BRosemann TLepers RRust CA. Women outperform men in ultradistance swimming: the Manhattan Island Marathon Swim from 1983 to 2013. Int J Sports Physiol Perform. 2014;9(6):913924. PubMed doi:10.1123/ijspp.2013-0375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    van den Tillaar REttema G. Effect of body size and gender in overarm throwing performance. Eur J Appl Physiol. 2004;91(4):413418. PubMed doi:10.1007/s00421-003-1019-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Perez-Gomez JRodriguez GVAra Iet al. Role of muscle mass on sprint performance: gender differences? Eur J Appl Physiol. 2008;102(6):685694. PubMed doi:10.1007/s00421-007-0648-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hegge AMMyhre KWelde BHolmberg HCSandbakk O. Are gender differences in upper-body power generated by elite cross-country skiers augmented by increasing the intensity of exercise? PLoS ONE. 2015;10(5):0127509. PubMed doi:10.1371/journal.pone.0127509

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Maldonado-Martin SMujika IPadilla S. Physiological variables to use in the gender comparison in highly trained runners. J Sports Med Phys Fitness. 2004;44(1):814. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Janssen IHeymsfield SBWang ZMRoss R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985). 2000;89(1):8188.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hegge AMBucher EEttema GFaude OHolmberg HCSandbakk O. Gender differences in power production, energetic capacity and efficiency of elite crosscountry skiers during wholebody, upperbody, and arm poling. Eur J Appl Physiol. 2016;116(2):291300. PubMed doi:10.1007/s00421-015-3281-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Toussaint HMde Groot GSavelberg HHVervoorn KHollander APvan Ingen Schenau GJ. Active drag related to velocity in male and female swimmers. J Biomech. 1988;21(5):435438. PubMed doi:10.1016/0021-9290(88)90149-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Keatinge WKhartchenko MLando NLioutov V. Hypothermia during sports swimming in water below 11 degrees. Br J Sports Med. 2001;35:352353 PubMed doi:10.1136/bjsm.35.5.352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Slawinski JTermoz NRabita Get al. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports. 2017;27(1):4554. PubMed doi:10.1111/sms.12627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sandbakk OHegge AMLosnegard TSkattebo OTonnessen EHolmberg HC. The physiological capacity of the world’s highest ranked female cross-country skiers. Med Sci Sports Exerc. 2016;48(6):10911100. PubMed doi:10.1249/MSS.0000000000000862

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Losnegard THallen J. Physiological differences between sprint- and distance-specialized cross-country skiers. Int J Sports Physiol Perform. 2014;9(1):2531. PubMed doi:10.1123/ijspp.2013-0066

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hill DWVingren JL. Effects of exercise mode and participant sex on measures of anaerobic capacity. J Sports Med Phys Fitness. 2014;54(3):255263. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Noordhof DAde Koning JJFoster C. The maximal accumulated oxygen deficit method: a valid and reliable measure of anaerobic capacity? Sports Med. 2010;40(4):285302. PubMed doi:10.2165/11530390-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pate RRKriska A. Physiological basis of the sex difference in cardiorespiratory endurance. Sports Med. 1984;1(2):8798. PubMed doi:10.2165/00007256-198401020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Saltin BÅstrand PO. Maximal oxygen uptake in athletes. J Appl Physiol. 1967;23(3):353358. PubMed

  • 27.

    Sandbakk ØHolmberg HC. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. Int J Sports Physiol Perform. 2017:123. doi:10.1123/ijspp.2017-0196

    • Search Google Scholar
    • Export Citation
  • 28.

    Tonnessen EHaugen TAHem ELeirstein SSeiler S. Maximal aerobic capacity in the winter Olympic endurance disciplines: Olympic medal benchmarks for the time period 1990–2013. Int J Sports Physiol Perform. 2015;10(7):835839. PubMed doi:10.1123/ijspp.2014-0431

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Joyner MJCoyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):3544. PubMed doi:10.1113/jphysiol.2007.143834

  • 30.

    Joyner MJ. Physiological limits to endurance exercise performance: influence of sex. J Physiol. 2017;595:29492954. PubMed doi:10.1113/JP272268

  • 31.

    Lundgren KMKarlsen TSandbakk OJames PETjonna AE. Sport-specific physiological adaptations in highly trained endurance athletes. Med Sci Sports Exerc. 2015;47(10):21502157. PubMed doi:10.1249/MSS.0000000000000634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Wiebe CGGledhill NWarburton DEJamnik VKFerguson S. Exercise cardiac function in endurance-trained males versus females. Clin J Sport Med. 1998;8(4):272279. PubMed doi:10.1097/00042752-199810000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Tarnopolsky MA. Gender differences in metabolism; nutrition and supplements. J Sci Med Sport. 2000;3(3):287298. PubMed doi:10.1016/S1440-2440(00)80038-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Cheneviere XBorrani FSangsue DGojanovic BMalatesta D. Gender differences in whole-body fat oxidation kinetics during exercise. Appl Physiol Nutr Metab. 2011;36(1):8895. PubMed doi:10.1139/H10-086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Daniels JDaniels N. Running economy of elite male and elite female runners. Med Sci Sports Exerc. 1992;24(4):483489. PubMed doi:10.1249/00005768-199204000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bransford DRHowley ET. Oxygen cost of running in trained and untrained men and women. Med Sci Sports. 1977;9(1):4144. PubMed

  • 37.

    Helgerud J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol Occup Physiol. 1994;68(2):155161. PubMed doi:10.1007/BF00244029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Billat VLepretre PMHeugas AMLaurence MHSalim D. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exercise. 2003;35(2):297304. doi:10.1249/01.MSS.0000053556.59992.A9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Lacour JRBourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115(4):651673. PubMed doi:10.1007/s00421-015-3115-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Hopker JJobson SCarter HPassfield L. Cycling efficiency in trained male and female competitive cyclists. J Sports Sci Med. 2010;9(2):332337. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    March DSVanderburgh PMTitlebaum PJHoops ML. Age, sex, and finish time as determinants of pacing in the marathon. J Strength Cond Res. 2011;25(2):386391. PubMed doi:10.1519/JSC.0b013e3181bffd0f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Carlsson MAssarsson HCarlsson T. The influence of sex, age, and race experience on pacing profiles during the 90 km Vasaloppet ski race. Open Access J Sports Med. 2016;7:1119. PubMed doi:10.2147/OAJSM.S101995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Losnegard TKjeldsen KSkattebo O. An analysis of the pacing strategies adopted by elite cross-country skiers. J Strength Cond Res. 2016;30(11):32563260. PubMed doi:10.1519/JSC.0000000000001424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Speechly DPTaylor SRRogers GG. Differences in ultra-endurance exercise in performance-matched male and female runners. Med Sci Sports Exerc. 1996;28(3):359365. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Trubee NWVanderburgh PMDiestelkamp WSJackson KJ. Effects of heat stress and sex on pacing in marathon runners. J Strength Cond Res. 2014;28(6):16731678. PubMed doi:10.1519/JSC.0000000000000295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Deaner ROAddona VCarter REJoyner MJHunter SK. Fast men slow more than fast women in a 10 kilometer road race. PeerJ. 2016;4:e2235. PubMed doi:10.7717/peerj.2235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ogles BMMasters KS. A typology of marathon runners based on cluster analysis of motivations. J Sport Behav. 2003;26(1):6985.

  • 48.

    Deaner ROLowen ARogers WSaksa E. Does the sex difference in competitiveness decrease in selective sub-populations? A test with intercollegiate distance runners. PeerJ. 2015;3:e884. PubMed doi:10.7717/peerj.884

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Tucker RCollins M. The science of sex verification and athletic performance. Int J Sports Physiol Perform. 2010;5(2):127139. PubMed doi:10.1123/ijspp.5.2.127

  • 50.

    Healy MLGibney JPentecost CWheeler MJSonksen PH. Endocrine profiles in 693 elite athletes in the postcompetition setting. Clin Endocrinol. 2014;81(2):294305. doi:10.1111/cen.12445

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 277 277 59
Full Text Views 16 16 4
PDF Downloads 13 13 3
Altmetric Badge
PubMed
Google Scholar
Cited By