Sex Differences in World-Record Performance: The Influence of Sport Discipline and Competition Duration

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

The current review summarizes scientific knowledge concerning sex differences in world-record performance and the influence of sport discipline and competition duration. In addition, the way that physiological factors relate to sex dimorphism is discussed. While cultural factors played a major role in the rapid improvement of performance of women relative to men up until the 1990s, sex differences between the world’s best athletes in most events have remained relatively stable at approximately 8–12%. The exceptions are events in which upper-body power is a major contributor, where this difference is more than 12%, and ultraendurance swimming, where the gap is now less than 5%. The physiological advantages in men include a larger body size with more skeletal-muscle mass, a lower percentage of body fat, and greater maximal delivery of anaerobic and aerobic energy. The greater strength and anaerobic capacity in men normally disappear when normalized for fat-free body mass, whereas the higher hemoglobin concentrations lead to 5–10% greater maximal oxygen uptake in men with such normalization. The higher percentage of muscle mass in the upper body of men results in a particularly large sex difference in power production during upper-body exercise. While the exercise efficiency of men and women is usually similar, women have a better capacity to metabolize fat and demonstrate better hydrodynamics and more even pacing, which may be advantageous, in particular during long-lasting swimming competitions.

Sandbakk and Solli are with the Center for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway. Holmberg is with the Swedish Winter Sports Research Center, Mid Sweden University, Östersund, Sweden.

Sandbakk (Oyvind.sandbakk@ntnu.no) is corresponding author.
  • 1.

    IOC. Factsheet: Women in the Olympic Movement. Lausanne, Switzerland: IOC; 2016.

  • 2.

    Tatem AJ, Guerra CA, Atkinson PM, Hay SI. Athletics: momentous sprint at the 2156 Olympics? Nature. 2004;431(7008):525. PubMed doi:10.1038/431525a

  • 3.

    Whipp BJ, Ward SA. Will women soon outrun men? Nature. 1992;355:25. PubMed doi:10.1038/355025a0

  • 4.

    Holden C. An everlasting gender gap? Science. 2004;305(5684):639–640. PubMed doi:10.1126/science.305.5684.639

  • 5.

    Seiler S, De Koning JJ, Foster C. The fall and rise of the gender difference in elite anaerobic performance 1952–2006. Med Sci Sports Exerc. 2006;39(3):534–540. doi:10.1249/01.mss.0000247005.17342.2b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Thibault V, Guillaume M, Berthelot G, et al. Women and men in sport performance: the gender gap has not evolved since 1983. J Sports Sci Med. 2010;9(2):214–223. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lepers R, Knechtle B, Stapley PJ. Trends in triathlon performance: effects of sex and age. Sports Med. 2013;43(9):851–863. PubMed doi:10.1007/s40279-013-0067-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sandbakk O, Ettema G, Leirdal S, Holmberg HC. Gender differences in the physiological responses and kinematic behaviour of elite sprint cross-country skiers. Eur J Appl Physiol. 2012;112(3):1087–1094. PubMed doi:10.1007/s00421-011-2063-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Zingg MA, Karner-Rezek K, Rosemann T, Knechtle B, Lepers R, Rust CA. Will women outrun men in ultra-marathon road races from 50 km to 1,000 km? Springerplus. 2014;3:97. PubMed doi:10.1186/2193-1801-3-97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Knechtle B, Valeri F, Nikolaidis PT, Zingg MA, Rosemann T, Rust CA. Do women reduce the gap to men in ultra-marathon running? Springerplus. 2016;5(1):672. PubMed doi:10.1186/s40064-016-2326-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Knechtle B, Rosemann T, Lepers R, Rust CA. Women outperform men in ultradistance swimming: the Manhattan Island Marathon Swim from 1983 to 2013. Int J Sports Physiol Perform. 2014;9(6):913–924. PubMed doi:10.1123/ijspp.2013-0375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    van den Tillaar R, Ettema G. Effect of body size and gender in overarm throwing performance. Eur J Appl Physiol. 2004;91(4):413–418. PubMed doi:10.1007/s00421-003-1019-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Perez-Gomez J, Rodriguez GV, Ara I, et al. Role of muscle mass on sprint performance: gender differences? Eur J Appl Physiol. 2008;102(6):685–694. PubMed doi:10.1007/s00421-007-0648-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hegge AM, Myhre K, Welde B, Holmberg HC, Sandbakk O. Are gender differences in upper-body power generated by elite cross-country skiers augmented by increasing the intensity of exercise? PLoS ONE. 2015;10(5):0127509. PubMed doi:10.1371/journal.pone.0127509

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Maldonado-Martin S, Mujika I, Padilla S. Physiological variables to use in the gender comparison in highly trained runners. J Sports Med Phys Fitness. 2004;44(1):8–14. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985). 2000;89(1):81–88.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hegge AM, Bucher E, Ettema G, Faude O, Holmberg HC, Sandbakk O. Gender differences in power production, energetic capacity and efficiency of elite crosscountry skiers during wholebody, upperbody, and arm poling. Eur J Appl Physiol. 2016;116(2):291–300. PubMed doi:10.1007/s00421-015-3281-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Toussaint HM, de Groot G, Savelberg HH, Vervoorn K, Hollander AP, van Ingen Schenau GJ. Active drag related to velocity in male and female swimmers. J Biomech. 1988;21(5):435–438. PubMed doi:10.1016/0021-9290(88)90149-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Keatinge W, Khartchenko M, Lando N, Lioutov V. Hypothermia during sports swimming in water below 11 degrees. Br J Sports Med. 2001;35:352–353 PubMed doi:10.1136/bjsm.35.5.352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Slawinski J, Termoz N, Rabita G, et al. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports. 2017;27(1):45–54. PubMed doi:10.1111/sms.12627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sandbakk O, Hegge AM, Losnegard T, Skattebo O, Tonnessen E, Holmberg HC. The physiological capacity of the world’s highest ranked female cross-country skiers. Med Sci Sports Exerc. 2016;48(6):1091–1100. PubMed doi:10.1249/MSS.0000000000000862

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Losnegard T, Hallen J. Physiological differences between sprint- and distance-specialized cross-country skiers. Int J Sports Physiol Perform. 2014;9(1):25–31. PubMed doi:10.1123/ijspp.2013-0066

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hill DW, Vingren JL. Effects of exercise mode and participant sex on measures of anaerobic capacity. J Sports Med Phys Fitness. 2014;54(3):255–263. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Noordhof DA, de Koning JJ, Foster C. The maximal accumulated oxygen deficit method: a valid and reliable measure of anaerobic capacity? Sports Med. 2010;40(4):285–302. PubMed doi:10.2165/11530390-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pate RR, Kriska A. Physiological basis of the sex difference in cardiorespiratory endurance. Sports Med. 1984;1(2):87–98. PubMed doi:10.2165/00007256-198401020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Saltin B, Åstrand PO. Maximal oxygen uptake in athletes. J Appl Physiol. 1967;23(3):353–358. PubMed

  • 27.

    Sandbakk Ø, Holmberg HC. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. Int J Sports Physiol Perform. 2017:1–23. doi:10.1123/ijspp.2017-0196

    • Search Google Scholar
    • Export Citation
  • 28.

    Tonnessen E, Haugen TA, Hem E, Leirstein S, Seiler S. Maximal aerobic capacity in the winter Olympic endurance disciplines: Olympic medal benchmarks for the time period 1990–2013. Int J Sports Physiol Perform. 2015;10(7):835–839. PubMed doi:10.1123/ijspp.2014-0431

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44. PubMed doi:10.1113/jphysiol.2007.143834

  • 30.

    Joyner MJ. Physiological limits to endurance exercise performance: influence of sex. J Physiol. 2017;595:2949–2954. PubMed doi:10.1113/JP272268

  • 31.

    Lundgren KM, Karlsen T, Sandbakk O, James PE, Tjonna AE. Sport-specific physiological adaptations in highly trained endurance athletes. Med Sci Sports Exerc. 2015;47(10):2150–2157. PubMed doi:10.1249/MSS.0000000000000634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Wiebe CG, Gledhill N, Warburton DE, Jamnik VK, Ferguson S. Exercise cardiac function in endurance-trained males versus females. Clin J Sport Med. 1998;8(4):272–279. PubMed doi:10.1097/00042752-199810000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Tarnopolsky MA. Gender differences in metabolism; nutrition and supplements. J Sci Med Sport. 2000;3(3):287–298. PubMed doi:10.1016/S1440-2440(00)80038-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Cheneviere X, Borrani F, Sangsue D, Gojanovic B, Malatesta D. Gender differences in whole-body fat oxidation kinetics during exercise. Appl Physiol Nutr Metab. 2011;36(1):88–95. PubMed doi:10.1139/H10-086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Daniels J, Daniels N. Running economy of elite male and elite female runners. Med Sci Sports Exerc. 1992;24(4):483–489. PubMed doi:10.1249/00005768-199204000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bransford DR, Howley ET. Oxygen cost of running in trained and untrained men and women. Med Sci Sports. 1977;9(1):41–44. PubMed

  • 37.

    Helgerud J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol Occup Physiol. 1994;68(2):155–161. PubMed doi:10.1007/BF00244029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Billat V, Lepretre PM, Heugas AM, Laurence MH, Salim D. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exercise. 2003;35(2):297–304. doi:10.1249/01.MSS.0000053556.59992.A9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Lacour JR, Bourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115(4):651–673. PubMed doi:10.1007/s00421-015-3115-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Hopker J, Jobson S, Carter H, Passfield L. Cycling efficiency in trained male and female competitive cyclists. J Sports Sci Med. 2010;9(2):332–337. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    March DS, Vanderburgh PM, Titlebaum PJ, Hoops ML. Age, sex, and finish time as determinants of pacing in the marathon. J Strength Cond Res. 2011;25(2):386–391. PubMed doi:10.1519/JSC.0b013e3181bffd0f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Carlsson M, Assarsson H, Carlsson T. The influence of sex, age, and race experience on pacing profiles during the 90 km Vasaloppet ski race. Open Access J Sports Med. 2016;7:11–19. PubMed doi:10.2147/OAJSM.S101995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Losnegard T, Kjeldsen K, Skattebo O. An analysis of the pacing strategies adopted by elite cross-country skiers. J Strength Cond Res. 2016;30(11):3256–3260. PubMed doi:10.1519/JSC.0000000000001424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Speechly DP, Taylor SR, Rogers GG. Differences in ultra-endurance exercise in performance-matched male and female runners. Med Sci Sports Exerc. 1996;28(3):359–365. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Trubee NW, Vanderburgh PM, Diestelkamp WS, Jackson KJ. Effects of heat stress and sex on pacing in marathon runners. J Strength Cond Res. 2014;28(6):1673–1678. PubMed doi:10.1519/JSC.0000000000000295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Deaner RO, Addona V, Carter RE, Joyner MJ, Hunter SK. Fast men slow more than fast women in a 10 kilometer road race. PeerJ. 2016;4:e2235. PubMed doi:10.7717/peerj.2235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ogles BM, Masters KS. A typology of marathon runners based on cluster analysis of motivations. J Sport Behav. 2003;26(1):69–85.

  • 48.

    Deaner RO, Lowen A, Rogers W, Saksa E. Does the sex difference in competitiveness decrease in selective sub-populations? A test with intercollegiate distance runners. PeerJ. 2015;3:e884. PubMed doi:10.7717/peerj.884

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Tucker R, Collins M. The science of sex verification and athletic performance. Int J Sports Physiol Perform. 2010;5(2):127–139. PubMed doi:10.1123/ijspp.5.2.127

  • 50.

    Healy ML, Gibney J, Pentecost C, Wheeler MJ, Sonksen PH. Endocrine profiles in 693 elite athletes in the postcompetition setting. Clin Endocrinol. 2014;81(2):294–305. doi:10.1111/cen.12445

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 350 350 73
Full Text Views 24 24 8
PDF Downloads 15 15 2