The Effect of Nitrate Supplementation on Cycling Performance in the Heat in Well-Trained Cyclists

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To determine the effect of NO3 consumption on measures of perception, thermoregulation, and cycling performance in hot conditions. Methods: In a randomized, double-blind, crossover design, 8 well-trained cyclists (mean ± SD age 25 ± 8 y, V˙O2 peak 64 ± 5 mL · kg−1 · min−1) performed 2 separate trials in hot (35°C, 60% relative humidity) environments, having ingested either 140 mL NO3-rich beetroot juice ∼8 mmol NO3 (NIT) or placebo (PLA) daily for 3 d with a 7-d washout period separating trials. Trials consisted of 2 × 10-min bouts at 40% and 60% peak power output (PPO) to determine physiological and perceptual responses to the heat, followed by a 4-km cycling time trial. Results: Basal [nitrite] was substantially elevated in NIT (2.70 ± 0.98 µM) vs PLA (1.10 ± 0.61 µM), resulting in a most likely (ES = 1.58 ± 0.93) increase after 3 d. There was a very likely trivial increase in rectal temperature in NIT at 40% (PLA 37.4°C ± 0.2°C vs NIT 37.5°C ± 0.3°C, 0.1°C ± 0.2°C) and 60% (PLA 37.8°C ± 0.2°C vs NIT 37.9°C ± 0.3°C, 0.1°C ± 0.2°C) PPO. Cycling performance was similar between trials (PLA 336 ± 45 W vs NIT 337 ± 50 W, CV ± 95%CL; 0.2% ± 2.5%). Outcomes for heart rate and perceptual measures were unclear across the majority of time points. Conclusions: Three days of NO3 supplementation resulted in small increases in rectal temperature during low- to moderate-intensity exercise, but this did not appear to influence 4-km cycling time-trial performance in hot climates.

McQuillan is with Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand. Casadio, Dulson, Laursen, and Kilding are with the Sports Performance Research Inst New Zealand, AUT University, Auckland, New Zealand.

McQuillan (jmcquill@waikato.ac.nz) is corresponding author.
  • 1.

    Cermak NM, Gibala MJ, van Loon LJ. Nitrate supplementation improves 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012;22:6471. PubMed doi:10.1123/ijsnem.22.1.64

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bailey SJ, Winyard P, Vanhatalo A, et al. Dietary nitrate supplementation reduces the O2 cost of exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107:11441155. PubMed doi:10.1152/japplphysiol.00722.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Larsen FJ, Schiffer TA, Borniquel S, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13:(2):149159. PubMed doi:10.1016/j.cmet.2011.01.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jones AM, Ferguson SK, Bailey SJ, Vanhatalo A, Poole DC. Fiber type-specific effects of dietary nitrate. Exerc Sport Sci Rev. 2016;44:5360. PubMed doi:10.1249/JES.0000000000000074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lansley KE, Winyard PG, Bailey SJ, et al. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc. 2011;43:11251131. PubMed doi:10.1249/MSS.0b013e31821597b4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Porcelli S, Ramaglia M, Bellistri G, et al. Aerobic fitness affects the exercise performance responses to nitrate supplementation. Med Sci Sports Exerc. 2015;47:16431651. PubMed doi:10.1249/MSS.0000000000000577

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kuennen M, Jansen L, Gillum T, et al. Dietary nitrate reduces the O2 cost of desert marching but elevates the rise in core temperature. Eur J Appl Physiol. 2015;115:25572569. PubMed doi:10.1007/s00421-015-3255-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tyler CJ, Coffey TR, Hodges GJ. Acute L-arginine supplementation has no effect on cardiovascular or thermoregulatory responses to rest, exercise, and recovery in the heat. Eur J Appl Physiol. 2016;116:363371. PubMed doi:10.1007/s00421-015-3295-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Stone MR, Thomas K, Wilkinson M, St Clair Gibson A, Thompson KG. Consistency of perceptual and metabolic responses to a laboratory simulated 4000 m cycling time trial. Eur J Appl Physiol. 2011;111:18071813. PubMed doi:10.1007/s00421-010-1818-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Govoni M, Jansson EA, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19(4):333337. PubMed doi:10.1016/j.niox.2008.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Schulze E, Daanen HA, Levels K, et al. Effect of thermal state and thermal comfort on cycling performance in the heat. Int J Sports Physiol Perform. 2015;10:655663. PubMed doi:10.1123/ijspp.2014-0281

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377381. PubMed doi:10.1249/00005768-198205000-00012

  • 13.

    Gagge AP, Stolwijk JA, Hardy JD. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res. 1967;1:120. PubMed doi:10.1016/0013-9351(67)90002-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hardy CJ, Rejeski WJ. Not what, but how one feels: the measurement of affect during exercise. J Sport Exerc Psychol. 1989;11:304317. doi:10.1123/jsep.11.3.304

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Chae SY, Lee M, Kim SW, Bac YH. Protection of insulin secreting cells from nitric oxide induced cellular damage by crosslinked hemoglobin. Biomaterials. 2003;25:843850. doi:10.1016/S0142-9612(03)00605-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Ghasemi A, Hedayati M, Biabani H. Protein precipitation methods evaluated for determination of serum nitric oxide end products by the Griess assay. J Med Sci Res. 2007;2:2932.

    • Search Google Scholar
    • Export Citation
  • 17.

    Tsikas D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal in the L-arginine/nitric oxide areas of research. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;851:5170. PubMed doi:10.1016/j.jchromb.2006.07.054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Paton CD, Hopkins WG. Variation in performance of elite cyclists from race to race. Eur J Appl Physiol. 2006;6:2531. doi:10.1080/17461390500422796

    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG. Linear models and effect magnitudes for research, clinical and practical applications. Sports Sci. 2010;14:4957.

  • 21.

    Peiffer JJ, Abbis CR. Influence of environmental temperature on 40 km cycling time-trial performance. Int J Sports Physiol Perform. 2011;6:208220. PubMed doi:10.1123/ijspp.6.2.208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sargeant AJ. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur J Appl Physiol Occup Physiol. 1987;56:693698. PubMed doi:10.1007/BF00424812

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cairns SP. Holistic approaches to understanding mechanisms of fatigue in high-intensity sport. Fatigue. 2013;1:148167. doi:10.100/21641846.2013.765086

    • Search Google Scholar
    • Export Citation
  • 24.

    Tatterson AJ, Hahn AG, Martin DT, Febbraio MA. Effects of heat stress on physiological responses and exercise performances in elite cyclists. J Sci Med Sport. 2000;3:186193. PubMed doi:10.1016/S1440-2440(00)80080-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensalbe heat stress. J Appl Physiol. 1998;84:17311739. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Modin A, Bjorne H, Herulf M, Alving K, Weitzberg E, Lundberg JO. Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation. Acta Physiol Scand. 2001;171:916. doi:10.1046/j.1365-201x.2001.171001009.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Tripathi A, Mack GW, Nadel ER. Cutaneous vascular reflexes during exercise in the heat. Med Sci Sports Exerc. 1990;22:796803. PubMed doi:10.1249/00005768-199012000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Crandall CG, Gonzalez-Alonso J. Cardio-vascular function in the heat-stressed human. Acta Physiol. 2010;199:407423. PubMed doi:10.1111/j.1748-1716.2010.02119.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Ross MLR, Garvican L, Jeacocke N, et al. Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc. 2011;43:123133. PubMed doi:10.1249/MSS.0b013e3181e93210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    McQuillan JA, Dulson DK, Laursen PB, Kilding AE. The effect of dietary nitrate supplementation on physiology and performance in trained cyclists. Int J Sports Physiol Perform. 2017;12(5):684689. doi:10.1123/ijspp.2016-0202

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bond H, Morton L, Braakhuis AJ. Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int J Sport Nutr Exerc Metab. 2012;22:251256. PubMed doi:10.1123/ijsnem.22.4.251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McQuillan JA, Dulson DK, Laursen PB, Kilding AE. Dietary nitrate fails to improve 1 and 4 km cycling performance in highly trained cyclists. Int J Sport Nutr Exerc Metab. 2017;27(3):255263. PubMed doi:10.1123/ijsnem.2016-0212

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 550 451 54
Full Text Views 8 3 2
PDF Downloads 11 6 5