The Effects of Maximally Achievable Cycling Cadence on Carbohydrate Management at Moderate and Heavy Exercise Intensity

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Effects of different cycling cadences (revolutions/min [rpm]) on metabolic rate, blood lactate concentration (BLC), and reliance on carbohydrate (CHO) defined as the fraction of oxygen uptake used for CHO oxidation (relCHO) are highly individual. Whether this depends on the individually maximal achievable rpm obtained at minimized cycling resistance (rpmmax) is unknown. The authors tested the hypotheses that the individual freely chosen rpm in an incremental cycle-ergometer test (ILT) and relCHO at given BLC levels both depend on rpmmax. Seven master cyclists and 8 not specifically trained leisure athletes performed an ILT at individually freely chosen rpm and an rpmmax test. Respiratory data and BLC were measured; relCHO was plotted as a function of the BLC for the determinations of the individual BLC at relCHO of 75% and 95% (BLC75% and BLC95%). With 16.7%, the between-subjects variability of individual rpm was high but independent from rpmmax. In the master athletes, rpmmax explained 59.3% and 95.2% of BLC75% (P = .043) and BLC95% (P = .001), respectively. Irrespective of cycling experience, the individually preferred average rpm at submaximal stages of an ILT is highly variable and independent of rpmmax. In experienced cyclists, carbohydrate management defined as the ratio between substrate availability as indicated by BLC and relCHO depends on rpmmax.

The authors are with the Inst of Sport Science and Motology, Philipps-University Marburg, Marburg, Germany.

Beneke (ralph.beneke@staff.uni-marburg.de) is corresponding author.
  • 1.

    Chavarren J, Calbet JA. Cycling efficiency and pedalling frequency in road cyclists. Eur J Appl Physiol Occup Physiol. 1999;80:555–563. PubMed doi:10.1007/s004210050634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gaesser GA, Brooks GA. Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol. 1975;38:1132–1139. PubMed

  • 3.

    Seabury JJ, Adams WC, Ramey MR. Influence of pedalling rate and power output on energy expenditure during bicycle ergometry. Ergonomics. 1977;20:491–498. PubMed doi:10.1080/00140137708931658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Zoladz JA, Rademaker AC, Sargeant AJ. Human muscle power generating capability during cycling at different pedalling rates. Exp Physiol. 2000;85:117–124. PubMed doi:10.1111/j.1469-445X.2000.01840.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hughes EF, Turner SC, Brooks GA. Effect of glycogen depletion and pedaling speed on “anaerobic threshold.” J Appl Physiol Respir Environ Exerc Physiol. 1982;52:1598–1607. PubMed

    • Search Google Scholar
    • Export Citation
  • 6.

    Woolford SM, Withers RT, Craig NP, Bourdon PC, Stanef T, McKenzie I. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists. Eur J Appl Physiol Occup Physiol. 1999;80:285–291. PubMed doi:10.1007/s004210050594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Buchanan M, Weltman A. Effects of pedal frequency on V˙O2 and work output at lactate threshold (LT), fixed blood lactate concentrations of 2 mM and 4 mM, and max in competitive cyclists. Int J Sports Med. 1985;6:163–168. PubMed doi:10.1055/s-2008-1025832

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Beneke R, Alkhatib A. High cycling cadence reduces carbohydrate oxidation at given low intensity metabolic rate. Biol Sport. 2015;32:27–33. PubMed doi:10.5604/20831862.1126325

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Beneke R, Leithäuser RM. Maximal lactate steady state’s dependence on cycling cadence. Int J Sports Physiol Perform. 2017;12(3):304–309. PubMed doi:10.1123/ijspp.2015-0573

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Beneke R, Leithäuser RM, Ochentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6:8–24. PubMed doi:10.1123/ijspp.6.1.8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc. 1995;27:863–867. PubMed doi:10.1249/00005768-199506000-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6:117–130. PubMed doi:10.1055/s-2008-1025824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Beneke R, Hütler M, von Duvillard SP, Sellens M, Leithäuser RM. Effect of test interruptions on blood lactate during constant workload testing. Med Sci Sports Exerc 2003;35:1626–1630. PubMed doi:10.1249/01.MSS.0000084520.80451.D5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Beneke R. Maximal lactate steady state concentration (MLSS): experimental and modelling approaches. Eur J Appl Physiol. 2003;88:361–369. PubMed doi:10.1007/s00421-002-0713-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Beneke R, Leithäuser RM, Hütler M. Dependence of the maximal lactate steady state on the motor pattern of exercise. Br J Sports Med. 2001;35:192–196. PubMed doi:10.1136/bjsm.35.3.192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Beneke R, von Duvillard SP. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc. 1996;28:241–246. PubMed doi:10.1097/00005768-199602000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dantas JL, Smirmaul BP, Altimari LR, et al. The efficiency of pedaling and the muscular recruitment are improved with increase of the cadence in cyclists and non-cyclists. Electromyogr Clin Neurophysiol. 2009;49:311–319. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kounalakis SN, Geladas ND. Cardiovascular drift and cerebral and muscle tissue oxygenation during prolonged cycling at different pedalling cadences. Appl Physiol Nutr Metab. 2012;37:407–417. PubMed doi:10.1139/h2012-011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Macintosh BR, Neptune RR, Horton JF. Cadence, power, and muscle activation in cycle ergometry. Med Sci Sports Exerc. 2000;32:1281–1287. PubMed doi:10.1097/00005768-200007000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sanderson DJ, Martin PE, Honeyman G, Keefer J. Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. J Electromyogr Kinesiol. 2006;16:642–649. PubMed doi:10.1016/j.jelekin.2005.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sargeant AJ. Human power output and muscle fatigue. Int J Sports Med. 1994;15:116–121. PubMed doi:10.1055/s-2007-1021031

  • 22.

    Essén-Gustavsson B, Henriksson J. Enzyme levels in pools of microdissected human muscle fibres of identified type: adaptive response to exercise. Acta Physiol Scand. 1984;120:505–515. doi:10.1111/j.1748-1716.1984.tb07414.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kiilerich K, Gudmundsson M, Birk JB, et al. Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle. Diabetes. 2010;59:26–32. PubMed doi:10.2337/db09-1032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Plomgaard P, Penkowa M, Leick L, Pedersen BK, Saltin B, Pilegaard H. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles. J Appl Physiol. 2006;101:817–825. PubMed doi:10.1152/japplphysiol.00183.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hashimoto T, Hussien R, Brooks GA. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab. 2006;290:1237–1244. PubMed doi:10.1152/ajpendo.00594.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hashimoto T, Hussien R, Cho HS, Kaufer D, Brooks GA. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS ONE. 2008;3:e2915. PubMed doi:10.1371/journal.pone.0002915

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Beneke R. Experiment and computer-aided simulation: complementary tools to understand exercise metabolism. Biochem Soc Trans. 2003;31:1263–1266. PubMed doi:10.1042/bst0311263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Beneke R, Hütler M, Leithäuser RM. Carbohydrate and fat metabolism related to blood lactate in boys and male adolescents. Eur J Appl Physiol. 2009;105:257–263. PubMed doi:10.1007/s00421-008-0897-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mader A, Heck H. A theory of the metabolic origin of “anaerobic threshold.” Int J Sports Med. 1986;7(suppl 1):S45–S65. doi:10.1055/s-2008-1025802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Péronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci. 1991;16:23–29. PubMed

  • 31.

    Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc London B Biol Sci. 1938;126:136–195. doi:10.1098/rspb.1938.0050

  • 32.

    Beneke R, Böning D. The limits of human performance. Essays Biochem. 2008;44:11–26. PubMed doi:10.1042/bse0440011

All Time Past Year Past 30 Days
Abstract Views 134 134 24
Full Text Views 0 0 0
PDF Downloads 0 0 0