Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

The influence of running speed and sex on running economy is unclear and may have been confounded by measurements of oxygen cost that do not account for known differences in substrate metabolism, across a limited range of speeds, and differences in performance standard. Therefore, this study assessed the energy cost of running over a wide range of speeds in high-level and recreational runners to investigate the effect of speed (in absolute and relative terms) and sex (men vs women of equivalent performance standard) on running economy. To determine the energy cost (kcal · kg−1 · km−1) of submaximal running, speed at lactate turn point (sLTP), and maximal rate of oxygen uptake, 92 healthy runners (high-level men, n = 14; high-level women, n = 10; recreational men, n = 35; recreational women, n = 33) completed a discontinuous incremental treadmill test. There were no sex-specific differences in the energy cost of running for the recreational or high-level runners when compared at absolute or relative running speeds (P > .05). The absolute and relative speed–energy cost relationships for the high-level runners demonstrated a curvilinear U shape with a nadir reflecting the most economical speed at 13 km/h or 70% sLTP. The high-level runners were more economical than the recreational runners at all absolute and relative running speeds (P < .05). These findings demonstrate that there is an optimal speed for economical running, there is no sex-specific difference, and high-level endurance runners exhibit better running economy than recreational endurance runners.

Black is with the School of Sport and Health Sciences, University of Exeter, Devon, United Kingdom. Handsaker, Allen, and Folland are with the School of Sport, Exercise and Health Sciences, and Forrester, the Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom.

Black (M.I.Black@exeter.ac.uk) is corresponding author.
  • 1.

    Foster C, Lucia A. Running economy: the forgotten factor in elite performance. Sports Med. 2007;37:316–319. PubMed doi:10.2165/00007256-200737040-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Saunders PU, Pyne DB, Telford RD, Hawley JA. Factors affecting running economy in trained distance runners. Sports Med. 2004;34:465–485. PubMed doi:10.2165/00007256-200434070-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84. PubMed doi:10.1097/00005768-200001000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lucia A, Esteve-Lanao J, Olivan J, et al. Physiological characteristics of the best Eritrean runners—exceptional running economy. Appl Phys Nutr Metab. 2006;31:530–540. PubMed doi:10.1139/h06-029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Lacour JR, Bourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115:651–673. PubMed doi:10.1007/s00421-015-3115-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Fletcher JR, Esau SP, Macintosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 2009;107:1918–1922. PubMed doi:10.1152/japplphysiol.00307.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Fletcher JR, Pfister TR, MacIntosh BR. Energy cost of running and Achilles tendon stiffness in man and woman trained runners. Physiol Rep. 2013;1:00178. PubMed doi:10.1002/phy2.178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Iaia FM, Hellsten Y, Nielsen JJ, Fernstrom M, Sahlin K, Bangsbo J. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. J Appl Physiol. 2009;106:73–80. PubMed doi:10.1152/japplphysiol.90676.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Shaw AJ, Ingham SA, Folland JP. The valid measurement of running economy in runners. Med Sci Sports Exerc. 2014;46:1968–1973. PubMed doi:10.1249/MSS.0000000000000311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Willcockson MA, Wall-Scheffler CM. Reconsidering the effects of respiratory constraints on the optimal running speed. Med Sci Sports Exerc. 2012;44:1344–1350. PubMed doi:10.1249/MSS.0b013e318248d907

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Steudel-Numbers KL, Wall-Scheffler CM. Optimal running speed and the evolution of hominin hunting strategies. J Hum Evol. 2009:56;355–360. PubMed doi:10.1016/j.jhevol.2008.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Daniels J, Daniels N. Running economy of elite male and female runners. Med Sci Sports Exerc. 1992;24:483–489. PubMed doi:10.1249/00005768-199204000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Howley ET, Glover ME. The caloric costs of running and walking one mile for men and women. Med Sci Sports. 1974;6:235–237. PubMed

  • 14.

    Helgerud J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol. 1994;68:155–161. doi:10.1007/BF00244029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Helgerud J, Oyvind S, Hoff J. Are there differences in running economy at different velocities for well-trained distance runners? Eur J Appl Physiol. 2010;108:1099–1105. PubMed doi:10.1007/s00421-009-1218-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ingham SA, Whyte GP, Pedlar C, Bailey DM, Dunman N, Nevill AM. Determinants of 800-m and 1500-m running performance using allometric models. Med Sci Sports Exerc. 2008;40:345–350. PubMed doi:10.1249/mss.0b013e31815a83dc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Morgan DW, Bransford DR, Costill DL, Daniels JT, Howley ET, Krahenhuhl GS. Variation in the aerobic demand of running among trained and untrained subjects. Med Sci Sports Exerc. 1995;27:404–409. PubMed doi:10.1249/00005768-199503000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pollock ML. Submaximal and maximal working capacity of elite distance runners, part I: cardiorespiratory aspects. Ann NY Acad Sci. 1977;301:310–322. PubMed doi:10.1111/j.1749-6632.1977.tb38209.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lusk G. Science of Nutrition. Philadelphia, PA: Saunders; 1928.

  • 20.

    Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1271–1278. PubMed doi:10.1152/ajpregu.00472.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Romijn J, Coyle E, Sidossis L, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:380–391. PubMed

    • Search Google Scholar
    • Export Citation
  • 22.

    International Association of Athletics Federations. IAAF scoring tables of athletics-outdoors. http://www.iaaf.org/about-iaaf/documents/technical. 2014. Accessed January 5, 2015.

    • Export Citation
  • 23.

    Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc. 1998;30:1270–1275. PubMed doi:10.1097/00005768-199808000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Peronnet F, Massicotte D. Table of non-protein respiratory quotient: an update. Can J Sport Sci. 1991;16:23–29. PubMed

  • 25.

    Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26:S28–S37. PubMed doi:10.1055/s-2004-830512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ralston HJ. Energy-speed relation and optimal speed during level walking. Int Z Angew Physiol. 1958;17:277–283. PubMed

  • 27.

    Hill RJ, Davies PS. Energy expenditure during 2 wk of an ultra-endurance run around Australia. Med Sci Sports Exerc. 2001;33:148–151. PubMed doi:10.1097/00005768-200101000-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Raichlen DA, Armstrong H, Lieberman DE. Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandartals. J Hum Evol. 2011;60:299–308. PubMed doi:10.1016/j.jhevol.2010.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Arampatzis A, De Monte G, Karamanidis K, Morey-Klapsing G, Stafilidis S, Bruggemann GP. Influence of the muscle-tendon unit’s mechanical and morphological properties on running economy. J Exp Biol. 2006;209:3345–3357. PubMed doi:10.1242/jeb.02340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Patton JF, Vogel JA. Cross-sectional and longitudinal evaluations of an endurance training programme. Med Sci Sports Exerc. 1977;9:100–103. PubMed doi:10.1249/00005768-197709020-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Boyer KA, Silvernail JF, Hamill J. The role of running mileage on coordination patterns in running. J Appl Biomech. 2014;30:649–654. PubMed doi:10.1123/jab.2013-0261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Baur H, Hirshmuller A, Muller S, Cassel M, Mayer F. Is EMG of the lower leg dependent on weekly running mileage? Int J Sports Med. 2012;33:53–57. PubMed doi:10.1055/s-0031-1286250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ghiani G, Marongiu E, Melis F, et al. Body composition changes affect energy cost of running during 12 months of specific diet and training in amateur athletes. Appl Physiol Nutr Metab. 2015;40:938–944. PubMed doi:10.1139/apnm-2015-0023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Burnley M, Jones AM. Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci. 2007;7:63–79. doi:10.1080/17461390701456148

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol. 2000;89:899–907. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Goto K, Ishii N, Mizuno A, Takamatsu K. Enhancement of fat metabolism by repeated bouts of moderate endurance exercise. J Appl Physiol. 2007;102:2158–2164. PubMed doi:10.1152/japplphysiol.01302.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Achten J, Jeukendup AE. Optimising fat oxidation through exercise and diet. Nutrition. 2004;20:716–727. PubMed doi:10.1016/j.nut.2004.04.005

  • 38.

    Febbraio MA, Snow RJ, Stathis CG, Hargreaves M, Carey MF. Effect of heat stress on muscle energy metabolism during exercise. J Appl Physiol. 1994;77:2827–2831. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Parkin JM, Carey MF, Zhao S, Febbraio MA. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J Appl Physiol. 1999;86:902–908. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 172 172 12
Full Text Views 10 10 3
PDF Downloads 8 8 4