Positive Effects of Augmented Feedback to Reduce Time on Ground in Well-Trained Runners

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Context: Successful elite sprint to long-distance runners are known to have shorter ground-contact time (GCT) than their less successful counterparts. Purpose: To investigate whether augmented feedback (aF) about GCT can reduce the time on ground (TOG) per minute in long-distance runners and, if so, whether this reduction improves running performance. Methods: Thirty well-trained runners were allocated to 3 groups. The intervention group (IG) received visual aF about their GCT during 8 high-intensity interval sessions in the 4-wk training period and were instructed to minimize GCT. The 1st control group (CG1) trained with the IG but was not given any feedback. The 2nd control group (CG2) followed their own training routine. Data were obtained pre- and postintervention for all 3 groups. The dependent variable was TOG per minute, computed from step frequency and GCT. Results: The IG significantly reduced TOG (P = .043, −1.7%, 90%CL −3.1;−0.3) and improved their mean 10 × 400-m performance time (P < .001, −1.5%, 90%CL −1.9;−1.1). In contrast, the 2 control groups revealed unchanged values, indicating that normal high-intensity training and an individualized routine without aF were not able to reduce TOG. The fact that CG1 received the same instructions and participated in the same training sessions as the IG underlined that aF was crucial to reduce TOG. Conclusions: The provision of aF about GCT seems to be a promising approach that should be considered during training practice of well-trained runners.

Gilgen-Ammann, Wyss, Troesch, and Heyer are with Swiss Federal Inst of Sport Magglingen SFISM, Magglingen, Switzerland. Taube is with the Dept of Medicine, Movement and Sport Science, University of Fribourg, Fribourg, Switzerland.

Gilgen-Ammann (rahel.gilgen@baspo.admin.ch) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Magill RA. The influence of augmented feedback on skill learning depends on characteristics of the skill and the learner. Quest. 1994;46(3):314327. doi:10.1080/00336297.1994.10484129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Moran KAMurphy CMarshall B. The need and benefit of augmented feedback on service speed in tennis. Med Sci Sports Exerc. 2012;44(4):754760. PubMed doi:10.1249/MSS.0b013e3182376a13

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Keller MLauber BGehring DLeukel CTaube W. Jump performance and augmented feedback: immediate benefits and long-term training effects. Hum Mov Sci. 2014;36:177189. PubMed doi:10.1016/j.humov.2014.04.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lauber BKeller MLeukel CGollhofer ATaube W. Specific interpretation of augmented feedback changes motor performance and cortical processing. Exp Brain Res. 2013;227(1):3141. PubMed doi:10.1007/s00221-013-3482-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Magill RAChamberlin CJHall KG. Verbal knowledge of results as redundant information for learning an anticipation timing skill. Hum Mov Sci. 1991;10(4):485507. doi:10.1016/0167-9457(91)90016-Q

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Morin JBSamozino PZameziati KBelli A. Effects of altered stride frequency and contact time on leg-spring behavior in human running. J Biomech. 2007;40(15):33413348. PubMed doi:10.1016/j.jbiomech.2007.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Weyand PGSandell RFPrime DNBundle MW. The biological limits to running speed are imposed from the ground up. J Appl Physiol (1985). 2010;108(4):950961. PubMed doi:10.1152/japplphysiol.00947.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Weyand PGSternlight DBBellizzi MJWright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol (1985). 2000;89(5):19911999.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Paavolainen LNummela ARusko HHakkinen K. Neuromuscular characteristics and fatigue during 10 km running. Int J Sports Med. 1999;20(8):516521. PubMed doi:10.1055/s-1999-8837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nummela AKeranen TMikkelsson LO. Factors related to top running speed and economy. Int J Sports Med. 2007;28(8):655661. PubMed doi:10.1055/s-2007-964896

  • 11.

    Bushnell THunter I. Differences in technique between sprinters and distance runners at equal and maximal speeds. Sports Biomech. 2007;6(3):261268. PubMed doi:10.1080/14763140701489728

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Girard OMillet GPSlawinski JRacinais SMicallef JP. Changes in running mechanics and spring-mass behaviour during a 5-km time trial. Int J Sports Med. 2013;34(9):832840. PubMed doi:10.1055/s-0032-1329958

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ammann RTaube WWyss T. Accuracy of PARTwear inertial sensor and optojump optical measurement system for measuring ground contact time during running. J Strength Cond Res. 2016;30(7):20572063. PubMed doi:10.1519/JSC.0000000000001299

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):9298. PubMed

  • 15.

    Horvath SMesserli TBirrer D. Erholung und Belastung schnell erfassen und Überlastung/Verletzungen vorbeugen. Magglinger Trainertagung; November 18–192015. Magglingen, Switzerland.

    • Export Citation
  • 16.

    Padulo JDegortes NMigliaccio GMet al. Footstep manipulation during uphill running. Int J Sports Med. 2013;34(3):244247. PubMed doi:10.1055/s-0032-1323724

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fitzmaurice GMLaird NMWare JH. Contrasting Marginal and Mixed Effects Models. Applied Longitudinal Analysis. 2nd ed. Hoboken, NJ: John Wiley & Sons; 2011.

    • Search Google Scholar
    • Export Citation
  • 18.

    Batterham AMHopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed doi:10.1123/ijspp.1.1.50

  • 19.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum; 1988:567 p.

  • 20.

    Hopkins WG. Probabilities of clinical or practical significance. Sportscience. 2002;6. http://www.sportsci.org/jour/0201/wghprob.htm. Updated September 15 2015. Accessed December 10 2015.

    • Search Google Scholar
    • Export Citation
  • 21.

    Mononen KViitasalo JTKonttinen NEra P. The effects of augmented kinematic feedback on motor skill learning in rifle shooting. J Sports Sci. 2003;21(10):867876. PubMed doi:10.1080/0264041031000101944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Halvorsen KEriksson MGullstrand L. Acute effects of reducing vertical displacement and step frequency on running economy. J Strength Cond Res. 2012;26(8):20652070. PubMed doi:10.1519/JSC.0b013e318239f87f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Messier SPCirillo KJ. Effects of a verbal and visual feedback system on running technique, perceived exertion and running economy in female novice runners. J Sports Sci. 1989;7(2):113126. PubMed doi:10.1080/02640418908729830

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopper DMAxel Berg MAAndersen HMadan R. The influence of visual feedback on power during leg press on elite women field hockey players. Phys Ther Sport. 2003;4(4):182186. doi:10.1016/S1466-853X(03)00068-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Keller MLauber BGottschalk MTaube W. Enhanced jump performance when providing augmented feedback compared to an external or internal focus of attention. J Sports Sci. 2015;33(10):10671075. PubMed doi:10.1080/02640414.2014.984241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Onate JAGuskiewicz KMSullivan RJ. Augmented feedback reduces jump landing forces. J Orthop Sports Phys Ther. 2001;31(9):511517. PubMed doi:10.2519/jospt.2001.31.9.511

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wälchli MRuffieux JBourquin YKeller MTaube W. Maximizing performance: augmented feedback, focus of attention, and/or reward? Med Sci Sports Exerc. 2015;48(4):714719. doi:10.1249/MSS.0000000000000818

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Porter JMNolan RPOstrowski EJWulf G. Directing attention externally enhances agility performance: a qualitative and quantitative analysis of the efficacy of using verbal instructions to focus attention. Front Psychol. 2010;1:216. PubMed doi:10.3389/fpsyg.2010.00216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gould DDieffenbach KMoffett A. Psychological characteristics and their development in Olympic champions. J Appl Sport Psychol. 2002;14(3):172204. doi:10.1080/10413200290103482

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Shephard RJ. Tests of maximum oxygen intake: a critical review. Sports Med. 1984;1(2):99124. PubMed doi:10.2165/00007256-198401020-00002

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 72 72 12
Full Text Views 7 7 4
PDF Downloads 5 5 3
Altmetric Badge
PubMed
Google Scholar