Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Context: Different relative aerobic energy contribution (WAER%) has been reported for the 2 women’s Olympic kayaking disciplines (ie, 200 and 500 m). Purpose: To investigate whether the adopted method of energy calculation influences the value of WAER% during kayaking time trials. Methods: Eleven adolescent female kayakers (age 14 ± 1 y, height 172 ± 4 cm, body mass 65.4 ± 4.2 kg, VO2peak 42.6 ± 4.9 mL·min−1·kg−1, training experience 1.5 ± 0.3 y) volunteered to participate in 1 incremental exercise test and 2 time trials (40 and 120 s) on the kayak ergometer. A portable spirometric system was used to measure gas metabolism. Capillary blood was taken from the ear lobe during and after the tests and analyzed for lactate afterward. The method of modified maximal accumulated oxygen deficit (m-MAOD) and the method based on the fast component of oxygen-uptake off-kinetics (PCr-La-O2) were used to calculate the energy contributions. Results: The anaerobic energy portions from m-MAOD were lower than those from PCr-La-O2 in the 40-s (41.9 ± 8.8 vs 52.8 ± 4.0 kJ, P > .05) and 120-s (64.1 ± 27.9 vs 68.2 ± 10.0 kJ, P > .05) time trials, which induced differences of WAER% between m-MAOD and PCr-La-O2 (36.0% vs 30.0% in 40 s, P > .05; 60.9% vs 57.5% in 120 s, P > .05). Conclusions: The reported different WAER% in women’s Olympic kayaking could be partly attributed to the adopted method of energy calculation (ie, m-MAOD vs PCr-La-O2). A fixed method of energy calculation is recommended during the longitudinal assessment on the relative energy contribution in women’s Olympic kayaking.

Li is with the School of Physical Education & Sport Training, Shanghai University of Sport, Shanghai, China. Niessen and Hartmann are with the Inst of Movement and Training Science, University of Leipzig, Leipzig, Germany. Chen is with the China Inst of Sport Science, Beijing, China.

Li (59058729@163.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725741. PubMed doi:10.2165/00007256-200131100-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Astrand PORodahl KDahl HAStromme SB. Textbook of Work Physiology. 4th ed. Champaign, IL: Human Kinetics; 2003

  • 3.

    Bompa TOHaff GG. Periodization--Theory and Methodology of Training. 4th ed. Champaign, IL: Human Kinetics; 2009

  • 4.

    Byrnes WCKearney JT. Aerobic and anaerobic contributions during simulated canoe/kayak sprint events 1256. Med Sci Sports Exerc. 1997;29(Suppl):220. doi:10.1097/00005768-199705001-01254

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Nakagaki KYoshioka TNabekura Y. The relative contribution of anaerobic and aerobic energy systems during flat-water kayak paddling. Jpn J Phys Fitness Sports Med. 2008;57(2):261270. doi:10.7600/jspfsm.57.261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Buglione ALazzer SColli RIntroini EDi Prampero PE. Energetics of best performances in elite kayakers and canoeists. Med Sci Sports Exerc. 2011;43(5):877884. PubMed doi:10.1249/MSS.0b013e3181fdfdb7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Zamparo PCapelli CGuerrini G. Energetics of kayaking at submaximal and maximal speeds. Eur J Appl Physiol. 1999;80(6):542548. doi:10.1007/s004210050632

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Zouhal HLe Douairon Lahaye SBen Abderrahaman AMinter GHerbez RCastagna C. Energy system contribution to Olympic distances in flat water kayaking (500 and 1,000 m) in highly trained subjects. J Strength Cond Res. 2012;26(3):825831. PubMed doi:10.1519/JSC.0b013e31822766f7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Li YNiessen MChen XHartmann U. Overestimate of relative aerobic contribution with maximal accumulated oxygen deficit: a review. J Sports Med Phys Fitness. 2015;55(5):377382. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Zamparo PBonifazi M. Bioenergetics of cyclic sport activities in water. In: Bagchi DSreejayan NSen C eds. Nutrition and Enhanced Sports Performance: Muscle Building Endurance and Strength. New York, NY: Academic Press; 2013:143150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Duffield RDawson BGoodman C. Energy system contribution to 400-metre and 800-metre track running. J Sports Sci. 2005;23(3):299307. PubMed doi:10.1080/02640410410001730043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Medbo JIMohn ACTabata IBahr RVaage OSejersted OM. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol. 1988;64(1):5060. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Medbo JI. Accumulated oxygen deficit issues. In: Connes PHue OPerrey S eds. Exercise Physiology: from a Cellular to an Integrative Approach (Biomedical and Health Research). Amsterdam, The Netherlands: IOS Press BV; 2010:367384.

    • Search Google Scholar
    • Export Citation
  • 14.

    Beneke RPollmann CBleif ILeithauser RMHutler M. How anaerobic is the Wingate Anaerobic Test for humans? Eur J Appl Physiol. 2002;87(4):388392. PubMed doi:10.1007/s00421-002-0622-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ceretelli PWhipp B. Equations describing power input by humans as a funtion of duration of exercise. In: Wilkie D ed. Exercise Bioenergetics and Gas Exchange. Amsterdam, The Netherlands: Elsevier; 1980:7580.

    • Search Google Scholar
    • Export Citation
  • 16.

    Noordhof DAde Koning JJFoster C. The maximal accumulated oxygen deficit method: a valid and reliable measure of anaerobic capacity? Sports Med. 2010;40(4):285302. PubMed doi:10.2165/11530390-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Bishop D. Physiological predictors of flat-water kayak performance in women. Eur J Appl Physiol. 2000;82(1–2):9197. doi:10.1007/s004210050656

  • 18.

    Davis PLeithäuser RBeneke R. The energetics of semi-contact 3 × 2 min amateur boxing. Int J Sports Physiol Perform. 2014;9(2):233239. doi:10.1123/ijspp.2013-0006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Macfarlane DJWong P. Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. Eur J Appl Physiol. 2012;112(7):25392547. PubMed doi:10.1007/s00421-011-2230-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ciba-Geigy. Wissenschaftliche Tabellen Geigy. Basel, Switzerland: Ciba-Geigy; 1985.

  • 21.

    Stegmann J. Leistungsphysiologie: physiologesche Grundlagen der Arbeit und des Sports. Stuttgart, Germany: Georg Thieme Verlag; 1977.

  • 22.

    di Prampero PE. Energetics of muscular exercise. Rev Physiol Biochem Pharmacol. 1981;89:143222. PubMed

  • 23.

    Bangsbo J. Quantification of anaerobic energy production during intense exercise. Med Sci Sports Exerc. 1998;30(1):4752. PubMed doi:10.1097/00005768-199801000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Davison RRVan Someren KAJones AM. Physiological monitoring of the Olympic athlete. J Sports Sci. 2009;27(13):14331442. PubMed doi:10.1080/02640410903045337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Buck DMcNaughton L. Maximal accumulated oxygen deficit must be calculated using 10-min time periods. Med Sci Sports Exerc. 1999;31(9):13461349. PubMed doi:10.1097/00005768-199909000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Maxwell NSNimmo MA. Anaerobic capacity: a maximal anaerobic running test versus the maximal accumulated oxygen deficit. Can J Appl Physiol. 1996;21(1):3547. PubMed doi:10.1139/h96-004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Barstow TJMole PA. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J Appl Physiol. 1991;71(6):20992106. PubMed

  • 28.

    Sousa AFigueiredo PZamparo PVilas-Boas JPFernandes RJ. Anaerobic alactic energy assessment in middle distance swimming. Eur J Appl Physiol. 2013;113(8):21532158. PubMed doi:10.1007/s00421-013-2646-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Margaria REdwards HTDill DB. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol. 1933;106(3):689715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    di Prampero PEFerretti G. The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol. 1999;118(2–3):103115. doi:10.1016/S0034-5687(99)00083-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    di Prampero PEMargaria R. Relationship between O2 consumption, high energy phosphates and the kinetics of the O2 debt in exercise. Pflugers Arch. 1968;304(1):1119. PubMed doi:10.1007/BF00586714

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 19 19 6
Full Text Views 1 1 0
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar