Is the Functional Threshold Power a Valid Surrogate of the Lactate Threshold?

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To analyze the relationship between functional threshold power (FTP) and the lactate threshold (LT). Methods: A total of 20 male cyclists performed an incremental test in which LT was determined. At least 48 h later, they performed a 20-min time trial, and 95% of the mean power output was defined as FTP. Participants were divided into recreational (peak power output < 4.5 W·kg−1; n = 11) or trained cyclists (peak power output > 4.5 W·kg−1; n = 9) according to their fitness status. Results: The FTP (240 [35] W) was overall not significantly different (effect size = 0.20; limits of agreement = −2.4% [11.5%]) from the LT (246 [24] W), and both markers were strongly correlated (r = .95; P < .0001). Accounting for the participants’ fitness status, no significant differences were found between FTP and LT (effect size = 0.22; limits of agreement =2.1% [7.8%]) in trained cyclists, but FTP was significantly lower than the LT (P = .0004, effect size = 0.81; limits of agreement =−6.5% [8.3%]) in recreational cyclists. A significant relationship was found between relative peak power output and the bias between FTP and the LT markers (r = .77; P < .0001). Conclusions: FTP is a valid field test-based marker for the assessment of endurance fitness. However, caution should be taken when using FTP interchangeably with LT, as the bias between markers seems to depend on the athlete’s fitness status. Whereas FTP provides a good estimate of LT in trained cyclists, in recreational cyclists, it may underestimate LT.

Valenzuela and de la Villa are with the Systems Biology Dept, University of Alcalá, Madrid, Spain. Valenzuela is also with the Dept of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain. Morales and Lucia are with the Faculty of Sport Sciences, European University of Madrid, Madrid, Spain. Foster is with the Dept of Exercise and Sport Science, University of Wisconsin–La Crosse, La Crosse, WI.

Valenzuela (pedrol.valenzuela@edu.uah.es) is corresponding author.
  • 1.

    Beneke R, Leithäuser RM, Ochentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6(1):824. PubMed ID: 21487146 doi:10.1123/ijspp.6.1.8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Allen H, Coggan A. Training and Racing With a Power Meter. Boulder, CO: Velopress; 2006.

  • 3.

    Sanders D, Abt G, Hesselink M, Myers T, Akubat I. Methods of monitoring training load and their relationships to changes in fitness and performance in competitive road cyclists. Int J Sports Physiol Perform. 2017;12(5):668675. PubMed ID: 28095061 doi:10.1123/ijspp.2016-0454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Machado FA, Nakamura FY, De Moraes SM. Influence of regression model and incremental test protocol on the relationship between lactate threshold using the maximal-deviation method and performance in female runners. J Sports Sci. 2012;30(12):12671274. PubMed ID: 22775431 doi:10.1080/02640414.2012.702424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Santos-Concejero J, Tucker R, Granados C, et al. Influence of regression model and initial intensity of an incremental test on the relationship between the lactate threshold estimated by the maximal-deviation method and running performance. J Sports Sci. 2014;32(9):853859. PubMed ID: 24479420 doi:10.1080/02640414.2013.862844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Arratibel Imaz I, Garcia Elorza I. Comparación de diferentes medidores de potencia para el entrenamiento en el ciclismo. Arch Med del Deport. 2010;27(139):367370.

    • Search Google Scholar
    • Export Citation
  • 8.

    Gardner AS, Stephens S, Martin DT, Lawton E, Lee H, Jenkins D. Accuracy of SRM and power tap power monitoring systems for bicycling. Med Sci Sports Exerc. 2004;36(7):12521258. PubMed ID: 15235334 doi:10.1249/01.MSS.0000132380.21785.03

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bentley DJ, Newell J, Bishop D. Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sport Med. 2007;37(7):575586. doi:10.2165/00007256-200737070-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M. A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med. 1992;13(7):518522. PubMed ID: 1459746 doi:10.1055/s-2007-1021309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Machado FA, De Moraes SM, Peserico CS, Mezzaroba PV, Higino WP. The Dmax is highly related to performance in middle-aged females. Int J Sports Med. 2011;32(9):672676. PubMed ID: 21563034 doi:10.1055/s-0031-1275671

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Nimmerichter A, Williams CA, Bachl N, Eston RG. Evaluation of a field test to assess performance in elite cyclists. Int J Sports Med. 2010;31:160166. PubMed ID: 20221996 doi:10.1055/s-0029-1243222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hopkins W, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Miller MC. Validity of using functional threshold power and intermittent power to predict cross-country mountain bike race outcome. J Sci Cycl. 2014;3(1):1620.

    • Search Google Scholar
    • Export Citation
  • 15.

    Fell JW. The modified D-max is a valid lactate threshold measurement in veteran cyclists. J Sci Med Sport. 2008;11(5):460463. PubMed ID: 17855166 doi:10.1016/j.jsams.2007.07.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Klika RJ, Alderdice MS, Kvale JJ, Kearney JT. Efficacy of cycling training based on a power field test. J Strength Cond Res. 2007;21(1):265269. PubMed ID: 17313274 doi:10.1519/00124278-200702000-00047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gavin TP, Van Meter JB, Brophy PM, Dubis GS, Potts KN, Hickner RC. Comparison of a field-based test to estimate functional threshold power and power output at lactate threshold. J Strength Cond Res. 2012;26(2):416421. PubMed ID: 22233784 doi:10.1519/JSC.0b013e318220b4eb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sanders D, Taylor RJ, Myers T, Akubat I. A field-based cycling test to assess predictors of endurance performance and establishing training zones [published online ahead of print March 25, 2017]. J Strength Cond Res. doi:10.1519/JSC.0000000000001910

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fukuba Y, Walsh ML, Morton RH, Cameron BJ, Kenny CT, Banister EW. Effect of endurance training on blood lactate clearance after maximal exercise. J Sports Sci. 1999;17(3):239248. PubMed ID: 10362391 doi:10.1080/026404199366145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Putman CT, Jones NL, Hultman E, et al. Effects of short-term submaximal training in humans on muscle metabolism in exercise. Am J Physiol. 1998;275(1):132139. doi:10.1152/ajpendo.1998.275.1.E132

    • Search Google Scholar
    • Export Citation
  • 21.

    Santos-concejero J, Irazusta J, Zabala-lili J, Gil S. Time to exhaustion at the onset of blood lactate accumulation in runners with different athletic ability. Rev Bras Med do Esporte. 2013;19(4):297302. doi:10.1590/S1517-86922013000400014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tesarz J, Schuster AK, Hartmann M, Gerhardt A, Eich W. Pain perception in athletes compared to normally active controls: a systematic review with meta-analysis. Pain. 2012;153(6):12531262. PubMed ID: 22607985 doi:10.1016/j.pain.2012.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Astokorki AH, Mauger AR. Tolerance of exercise-induced pain at a fixed rating of perceived exertion predicts time trial cycling performance. Scand J Med Sci Sport. 2017;27(3):309317. doi:10.1111/sms.12659

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Marcora SM, Staiano W. The limit to exercise tolerance in humans: mind over muscle? Eur J Appl Physiol. 2010;109(4):763770. PubMed ID: 20221773 doi:10.1007/s00421-010-1418-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39(6):469490. PubMed ID: 19453206 doi:10.2165/00007256-200939060-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Yoshida T. Effect of dietary modifications on lactate threshold and onset of blood lactate accumulation during incremental exercise. Eur J Appl Physiol Occup Physiol. 1984;53(3):200205. PubMed ID: 6542853 doi:10.1007/BF00776590

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Blomstrand E, Saltin B. Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J Physiol. 1999;514(1):293302. doi:10.1111/j.1469-7793.1999.293af.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Foxdal P, Sjödin A, Ostman B, Sjödin B. The effect of different blood sampling sites and analyses on the relationship between exercise intensity and 4.0 mmol·l−1 blood lactate concentration. Eur J Appl Physiol Occup Physiol. 1991;63(1):5254. PubMed ID: 1915332 doi:10.1007/BF00760801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Arratibel I, Calleja-González J, Emparanza JI, Terrados N, Mjaanes JM, Ostojic SM. Lack of concordance amongst measurements of individual anaerobic threshold and maximal lactate steady state on a cycle ergometer. Phys Sportsmed. 2016;44(1):3445. doi:10.1080/00913847.2016.1122501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Czuba M, Zając A, Cholewa J, Poprzęcki S, Waśkiewicz Z, Mikołajec K. Lactate threshold (D-max method) and maximal lactate steady state in cyclists. J Hum Kinet. 2009;21(1):4956. doi:10.2478/v10078-09-0006-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Nicholson RM, Sleivert GG. Indices of lactate threshold and their relationship with 10-km running velocity. Med Sci Sports Exerc. 2001;33(2):339343. PubMed ID: 11224827 doi:10.1097/00005768-200102000-00026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Bentley DJ, Mcnaughton LR, Thompson D, Vleck VE, Batterham AM. Peak power output, the lactate threshold, and time trial performance in cyclists. Med Sci Sports Exerc. 2001;33(12):20772081. PubMed ID: 11740302 doi:10.1097/00005768-200112000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    McNaughton LR, Roberts S, Bentley DJ. The relationship among peak power output, lactate threshold, and short-distance cycling performance: effects of incremental exercise test design. J Strength Cond Res. 2006;20(1):157161. PubMed ID: 16506862 doi:10.1519/R-15914.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc. 1998;30(8):12701275. PubMed ID: 9710868 doi:10.1097/00005768-199808000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bishop D, Jenkins DG, McEniery M, Carey MF. Relationship between plasma lactate parameters and muscle characteristics in female cyclists. Med Sci Sports Exerc. 2000;32(6):10881093. PubMed ID: 10862534 doi:10.1097/00005768-200006000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Fabre N, Balestreri F, Pellegrini B, Schena F. The modified D-max method is reliable to predict the second ventilatory threshold in elite cross-country skiers. J Strength Cond Res. 2010;24(6):15461552. PubMed ID: 20508457 doi:10.1519/JSC.0b013e3181dc450a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Chalmers S, Esterman A, Eston R, Norton K. Standardisation of the D-max method for calculating the second lactate threshold. Int J Sports Physiol Perform. 2015;10(7):921926. PubMed ID: 25710184 doi:10.1123/ijspp.2014-0537

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sport performance. Sport Med. 2008;38(4):297316. doi:10.2165/00007256-200838040-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 741 627 50
Full Text Views 53 34 2
PDF Downloads 33 24 1