Time-Trial Performance in Elite Speed Skaters After Remote Ischemic Preconditioning

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Speed skating leads to blood-flow restriction and deoxygenation in the lower limbs (especially the right leg) that may affect performance. Although the acute influence of such deoxygenation is not clearly understood, the authors tested whether remote ischemic preconditioning (RIPC) could modify muscular oxygenation and improve time-trial performance in that sport. Methods: Using a randomized, single-blind, placebo-controlled, crossover design, 9 elite speed skaters performed 1000-m on-ice time trials preceded by either RIPC of the upper limbs (3 × 5-min compression/5-min reperfusion cycles at 30 mm Hg >arterial systolic pressure) or placebo treatment (SHAM; 10 mm Hg). Changes in tissue saturation index, oxyhemoglobin–oxymyoglobin, deoxyhemoglobin–deoxymyoglobin, and total hemoglobin–myoglobin in the right vastus lateralis muscle were monitored using near-infrared spectroscopy (NIRS). Differences between RIPC and SHAM were analyzed using Cohen effect size (ES) ± 90% confidence limits and magnitude-based inferences. Results: Compared with SHAM, RIPC had a negligible effect on performance and NIRS variables. However, in a subgroup of sprinters (n = 5), RIPC likely lowered tissue saturation index at the beginning of the time trial (−6.1%; ES = −0.65) and likely increased deoxyhemoglobin–deoxymyoglobin at the beginning (3%; ES = 0.39), middle (2.9%; ES = 0.37), and end of the trial (−2.1%; ES = 0.27). In the middle section of the trial, these metabolic changes were concomitant with a possible increase in total hemoglobin–myoglobin. Conclusion: RIPC has no practical ergogenic impact on 1000-m long-track speed-skating performance in elite athletes. The relevance of using RIPC during training to increase physiological stress in sprinters particularly deserves further investigation.

The authors are with the Kinesiology Dept, Laval University, Québec City, QC, Canada.

Billaut (francois.billaut@kin.ulaval.ca) is corresponding author.
  • 1.

    Konings MJ, Elferink-Gemser MT, Stoter IK, van der Meer D, Otten E, Hettinga FJ. Performance characteristics of long-track speed skaters: a literature review. Sport Med. 2015;45(4):505–516. doi:10.1007/s40279-014-0298-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Rundell KW, Nioka S, Chance B. Hemoglobin/myoglobin desaturation during speed skating. Med Sci Sports Exerc. 1997;29(2):248–258. PubMed ID: 9044231 doi:10.1097/00005768-199702000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hettinga FJ, Konings MJ, Cooper CE, Kingdom U. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front Physiol. 2016;7:619. PubMed ID: 28018244 doi:10.3389/fphys.2016.00619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Sharma V, Marsh R, Cunniffe B, Cardinale M, Yellon DM, Davidson SM. From protecting the heart to improving athletic performance—the benefits of local and remote ischaemic preconditioning. Cardiovasc Drugs Ther. 2015;29(6):573–588. PubMed ID: 26477661 doi:10.1007/s10557-015-6621-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kimura M, Ueda K, Goto C, et al. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27(6):1403–1410. PubMed ID: 17446439 doi:10.1161/ATVBAHA.107.143578

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Enko K, Nakamura K, Yunoki K, et al. Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci. 2011;61(6):507–513. PubMed ID: 21901641 doi:10.1007/s12576-011-0172-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kido K, Suga T, Tanaka D, et al. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep. 2015;3:12395. PubMed ID: 25952936 doi:10.14814/phy2.12395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Barbosa TC, Machado AC, Braz ID, et al. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand J Med Sci Sport. 2015;25(3):356–364. doi:10.1111/sms.12229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Paradis-Deschênes P, Joanisse DR, Billaut F. Ischemic preconditioning increases muscle perfusion, oxygen uptake and force in strength-trained athletes. Appl Physiol Nutr Metab. 2016;41:938–944. doi:10.1139/apnm-2015-0561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Incognito AV, Burr JF, Millar PJ. The effects of ischemic preconditioning on human exercise performance. Sport Med. 2016;46(4):531–544. doi:10.1007/s40279-015-0433-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Marocolo M, da Mota GR, Simim MAM, Appell Coriolano HJ. Myths and facts about the effects of ischemic preconditioning on performance. Int J Sports Med. 2016;37(2):87–96. PubMed ID: 26509376 doi:10.1055/s-0035-1564253

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Berger MM, Macholz F, Mairbäurl H, Bartsch P. Remote ischemic preconditioning for prevention of high altitude diseases: fact or fiction? J Appl Physiol. 2015;119(10):1143–1151. PubMed ID: 26089545 doi:10.1152/japplphysiol.00156.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sharma V, Cunniffe B, Verma AP, Cardinale M, Yellon D. Characterization of acute ischemia-related physiological responses associated with remote ischemic preconditioning: a randomized controlled, crossover human study. Physiol Rep. 2014;2(11):e12200. doi:10.14814/phy2.12200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Salvador F, De Aguiar AR, Lisboa F, Pereira K, Cruz R, Caputo F. Ischemic preconditioning and exercise performance: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2016;11(1):4–14. doi:10.1123/ijspp.2015-0204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    McIntyre JPR, Kilding AE. Effects of high-intensity intermittent priming on physiology and cycling performance. J Sports Sci. 2015;33(6):561–567. PubMed ID: 25357090 doi:10.1080/02640414.2014.960882

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bailey SJ, Vanhatalo A, Wilkerson DP, Dimenna FJ, Jones AM. Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J Appl Physiol. 2009;107(10):1743–1756. doi:10.1152/japplphysiol.00810.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Burnley M, Doust JH, Jones AM, Time AMJ. Time required for the restoration of normal heavy exercise VO2 following prior heavy exercise. J Appl Physiol. 2006;101(5):1320–1327. PubMed ID: 16857864 doi:10.1152/japplphysiol.00475.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ingham SA, Fudge BW, Pringle JS, Jones AM. Improvement of 800-m running performance with prior high-intensity exercise. Int J Sports Physiol Perform. 2013;8(1):77–83. PubMed ID: 22868404 doi:10.1123/ijspp.8.1.77

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Born DP, Zinner C, Herlitz B, Richter K, Holmberg HC, Sperlich B. Muscle oxygenation asymmetry in ice speed skaters: not compensated by compression. Int J Sports Physiol Perform. 2014;9(1):58–67. PubMed ID: 23239684 doi:10.1123/ijspp.2012-0210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Paradis-Deschênes P, Joanisse DR, Billaut F. Sex-specific impact of ischemic preconditioning on tissue oxygenation and maximal concentric force. Front Physiol. 2017;7:674. doi:10.3389/fpls.2017.00674

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Piucco T, Soares R, Diefenthaeler F, Millet G, Murias J. V˙O2 and muscle deoxygenation kinetics during skating: comparison between slide board and treadmill skating. Int J Sports Physiol Perform. 2017;15:1–20. doi:10.1123/ijspp.2017-0440

    • Search Google Scholar
    • Export Citation
  • 22.

    McCully KK, Hamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev. 2000;28(3):123–127. PubMed ID: 10916704 doi:10.1117/1.2805437

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Van Beekvelt MC, Colier WN, Wevers RA, Van Engelen BG. Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle. J Appl Physiol. 2001;90(2):511–519. PubMed ID: 11160049 doi:10.1152/jappl.2001.90.2.511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29(4):463–487. PubMed ID: 15328595 doi:10.1139/h04-031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Van Beekvelt MC, Van Engelen BG, Wevers RA, Colier WN. In vivo quantitative near-infrared spectroscopy in skeletal muscle during incremental isometric handgrip exercise. Clin Physiol Funct Imaging. 2002;22(3):210–217. PubMed ID: 12076348 doi:10.1046/j.1475-097X.2002.00420.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Faiss R, Léger B, Vesin JM, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE. 2013;8(2):e56522. doi:10.1371/journal.pone.0056522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ahmetov II, Druzhevskaya AM, Lyubaeva EV, Popov DV, Vinogradova OL, Williams AG. The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp Physiol. 2011;96(12):1302–1310. PubMed ID: 21930675 doi:10.1113/expphysiol.2011.060293

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Iazvikov VV, Sukhova ZI, Ivanitskaia VV, Makarova LF, Poluektova BP. Features of the ultrastructural organization of the muscles of skaters in relation to their sport specialization and muscle fiber composition [in Russian]. Arkh Anat Gistol Embriol. 1985;89(12):87–90. PubMed ID: 4091688

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Jean-St-Michel E, Manlhiot C, Li J, et al. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011;43(7):1280–1286. PubMed ID: 21131871 doi:10.1249/MSS.0b013e318206845d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tanaka D, Suga T, Tanaka T, et al. Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. Physiol Biochem. 2016;37(8):614–618. doi:10.1055/s-0035-1565141

    • Search Google Scholar
    • Export Citation
  • 32.

    Patterson SD, Bezodis NE, Glaister M, Pattison JR. The effect of ischemic preconditioning on repeated sprint cycling performance. Med Sci Sports Exerc. 2015;47(8):1652–1658. PubMed ID: 25412297 doi:10.1249/MSS.0000000000000576

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kjeld T, Rasmussen MR, Jattu T, Nielsen HB, Secher NH. Ischemic preconditioning of one forearm enhances static and dynamic apnea. Med Sci Sports Exerc. 2014;46(1):151–155. PubMed ID: 23846166 doi:10.1249/MSS.0b013e3182a4090a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Foster C, Rundell K, Snyder AC, et al. Evidence for restricted muscle blood flow during speed skating. Med Sci Sports Exerc. 1999;31(10):1433–1440. PubMed ID: 10527316 doi:10.1097/00005768-199910000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    De Groot PC, Thijssen DH, Sanchez M, Ellenkamp R, Hopman MT. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010;108(1):141–146. PubMed ID: 19760432 doi:10.1007/s00421-009-1195-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Lisbôa FD, Turnes T, Cruz RSO, Raimundo JAG, Pereira GS, Caputo F. The time dependence of the effect of ischemic preconditioning on successive sprint swimming performance. J Sci Med Sport. 2017;20(5):507–511. doi:10.1016/j.jsams.2016.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Van Der Zwaard S, Jaspers RT, Blokland IJ, et al. Oxygenation threshold derived from near-infrared spectroscopy: reliability and its relationship with the first ventilatory threshold. PLoS ONE. 2016;11(9):e0162914. doi:10.1371/journal.pone.0162914

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 139 139 10
Full Text Views 13 13 1
PDF Downloads 5 5 0