Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Nitrate supplementation can increase tolerance to high-intensity work rates; however, limited data exist on the recovery of performance. The authors tested whether 5 d of nitrate supplementation could improve repeated time-trial performance in speed skating. Methods: Using a double-blind, placebo-controlled, crossover design, 9 international-level short-track speed skaters ingested 1 high (juice blend, ∼6.5 mmol nitrate; HI) or low dose (juice blend, ∼1 mmol nitrate; LO) per day on days 1–4. After a double dose of either HI or LO on day 5, athletes performed 2 on-ice 1000-m time trials, separated by 35 min, to simulate competition races. Differences between HI and LO were compared with the smallest practically important difference. Results: Salivary [nitrate] and [nitrite] were higher in HI than LO before the first (nitrate: 81%, effect size [ES]: 1.76; nitrite: 72%, ES: 1.73) and second pursuits (nitrate: 81%, ES: 1.92; nitrite: 71%, ES: 1.78). However, there was no difference in performance in the first (LO: 90.92 [4.08] s; HI: 90.95 [4.06] s, ES: 0.01) or the second time trial (LO: 91.16 [4.06] s; HI: 91.55 [4.40] s, ES: 0.09). Plasma [lactate] measured after the trials (LO: 14.8 [1.1] mM; HI: 14.8 [1.2] mM, ES: 0.01) and at the end of the recovery period (LO: 9.8 [2.1] mM; HI: 10.2 [1.9] mM, ES: 0.05) was not different between treatments. Conclusion: Five days of high-dose nitrate supplementation did not change physiological responses and failed to improve single and repeated time-trial performances in world-class short-track speed skaters. These data suggest that nitrate ingestion up to 6.5 mmol does not enhance recovery from supramaximal exercise in world-class athletes.

Richard and Billaut are with the Kinesiology Dept, Laval University, Québec City, QC, Canada. Koziris is with the Dept of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada. Charbonneau, Naulleau, and Billaut are with the Québec National Inst of Sport, Montréal, QC, Canada. Tremblay is with the Kinesiology Dept, University of Montréal, Montréal, QC, Canada.

Billaut (francois.billaut@kin.ulaval.ca) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Foster CRundell KSnyder ACet al. Evidence for restricted muscle blood flow during speed skating. Med Sci Sports Exerc. 1999;31(10):14331440. PubMed ID: 10527316 doi:10.1097/00005768-199910000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rundell KW. Compromised oxygen uptake in speed skaters during treadmill in-line skating. Med Sci Sports Exerc. 1996;28(1):120127. PubMed ID: 8775364 doi:10.1097/00005768-199601000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rundell KWNioka SChance B. Hemoglobin/myoglobin desaturation during speed skating. Med Sci Sports Exerc. 1997;29(2):248258. PubMed ID: 9044231 doi:10.1097/00005768-199702000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hettinga FJKonings MJCooper CE. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front Physiol. 2016;7:619. doi:10.3389/fphys.2016.00619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    McMahon NFLeveritt MDPavey TG. The effect of dietary nitrate supplementation on endurance exercise performance in healthy adults: a systematic review and meta-analysis. Sports Med. 2017;47(4):735756. doi:10.1007/s40279-016-0617-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Stamler JSMeissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81(1):209237. PubMed ID: 11152758 doi:10.1152/physrev.2001.81.1.209

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hoon MWJohnson NAChapman PGBurke LM. The effect of nitrate supplementation on exercise performance in healthy individuals: a systematic review and meta-analysis. Int J Sport Nutr Exerc Metab. 2013;23(5):522532. PubMed ID: 23580439 doi:10.1123/ijsnem.23.5.522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jones AM. Influence of dietary nitrate on the physiological determinants of exercise performance: a critical review. Appl Physiol Nutr Metab. 2014;39(9):10191028. PubMed ID: 25068792 doi:10.1139/apnm-2014-0036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Clifford TBerntzen BDavison GWWest DJHowatson GStevenson EJ. Effects of beetroot juice on recovery of muscle function and performance between bouts of repeated sprint exercise. Nutrients. 2016;8(8):506. doi:10.3390/nu8080506

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Wylie LJMohr MKrustrup Pet al. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol. 2013;113(7):16731684. PubMed ID: 23370859 doi:10.1007/s00421-013-2589-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bond HMorton LBraakhuis A. Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int J Sport Nutr Exerc Metab. 2012;22(4):251256. PubMed ID: 22710356 doi:10.1123/ijsnem.22.4.251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Muggeridge DJHowe CCSpendiff OPedlar CJames PEEaston C. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int J Sport Nutr Exerc Metab. 2013;23(5):498506. PubMed ID: 23580456 doi:10.1123/ijsnem.23.5.498

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Christensen PMNyberg MBangsbo J. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. Scand J Med Sci Sports. 2013;23(1):2131. doi:10.1111/sms.12005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Batterham AMHopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum; 1988:567.

  • 17.

    Clements WLee SRBloomer R. Nitrate ingestion: a review of the health and physical performance effects. Nutrients. 2014;6(11):52245264. doi:10.3390/nu6115224

  • 18.

    Bailey SJFulford JVanhatalo Aet al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109(1):135148. PubMed ID: 20466802 doi:10.1152/japplphysiol.00046.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Jones AM. Dietary nitrate supplementation and exercise performance. Sports Med. 2014;44(suppl 1):S35S45. doi:10.1007/s40279-014-0149-y

  • 20.

    Ferguson SKHirai DMCopp SWet al. Effects of nitrate supplementation via beetroot juice on contracting rat skeletal muscle microvascular oxygen pressure dynamics. Respir Physiol Neurobiol. 2013;187(3):250255. PubMed ID: 23584049 doi:10.1016/j.resp.2013.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wilkerson DPHayward GMBailey SJVanhatalo ABlackwell JRJones AM. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur J Appl Physiol. 2012;112(12):41274134. PubMed ID: 22526247 doi:10.1007/s00421-012-2397-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Porcelli SRamaglia MBellistri Get al. Aerobic fitness affects the exercise performance responses to nitrate supplementation. Med Sci Sports Exerc. 2015;47(8):16431651. PubMed ID: 25412295 doi:10.1249/MSS.0000000000000577

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    McConell GKBradley SJStephens TJCanny BJKingwell BALee-Young RS. Skeletal muscle nNOS mu protein content is increased by exercise training in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R821R828. PubMed ID: 17459909 doi:10.1152/ajpregu.00796.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Poveda JJRiestra ASalas Eet al. Contribution of nitric oxide to exercise-induced changes in healthy volunteers: effects of acute exercise and long-term physical training. Eur J Clin Invest. 1997;27(11):967971. PubMed ID: 9395795 doi:10.1046/j.1365-2362.1997.2220763.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Tomlin DLWenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31(1):111. doi:10.2165/00007256-200131010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Vanhatalo AFulford JBailey SJBlackwell JRWinyard PGJones AM. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol. 2011;589(pt 22):55175528. PubMed ID: 21911616 doi:10.1113/jphysiol.2011.216341

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Noordhof DA. Dietary supplements to improve energy metabolism during long-track speed skating. Sport en Geneeskd Flemish/Dutch J Sport Med. 2015;47(3):618.

    • Search Google Scholar
    • Export Citation
  • 28.

    Hernández ASchiffer TAIvarsson Net al. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J Physiol. 2012;590(15):35753583. doi:10.1113/jphysiol.2012.232777

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Iazvikov VVSukhova ZIIvanitskaia VVMakarova LFPoluektova BP. Features of the ultrastructural organization of the muscles of skaters in relation to their sport specialization and muscle fiber composition [in Russian]. Arkh Anat Gistol Embriol. 1985;89(12):8790. PubMed ID: 4091688

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hesford CMLaing SCardinale MCooper CE. Effect of race distance on muscle oxygenation in short-track speed skating. Med Sci Sports Exerc. 2013;45(1):8392. PubMed ID: 22895375 doi:10.1249/MSS.0b013e31826c58dd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hesford CMLaing SJCardinale MCooper CE. Asymmetry of quadriceps muscle oxygenation during elite short-track speed skating. Med Sci Sports Exerc. 2012;44(3):501508. PubMed ID: 21900848 doi:10.1249/MSS.0b013e31822f8942

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Noorbergen OSKonings MJElferink-Gemser MTMicklewright DHettinga FJ. Pacing and tactical positioning in 500- and 1000-m short-track speed skating. Int J Sports Physiol Perform. 2016;11(6):742748. PubMed ID: 26641204 doi:10.1123/ijspp.2015-0384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Konings MJHettinga FJ. Preceding race efforts affect pacing and short-track speed skating performance. Int J Sports Physiol Perform. 2018;13(8):970976. doi:10.1123/ijspp.2017-0637

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 78 78 21
Full Text Views 13 13 8
PDF Downloads 5 5 2
Altmetric Badge
PubMed
Google Scholar