Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To evaluate the effect of multiple sets of repeated-sprint-ability (RSA)-induced fatigue on subsequent passing-skill performance in field hockey players. Methods: A total of 10 elite U-21 (under-21) male field hockey players performed 5 sets of a combination of RSA test (6 × 20 m, 20 s of passive recovery) followed by a 1-min passing-skill test (passing reception with subsequent passes at a predesigned target). Data on fastest sprint time and cumulated sprint time for RSA test; total number of balls played, targeted, and passing accuracy (number of balls targeted/total number of balls played) for passing-skill test; heart rate (HR), blood lactate concentration (BLa), and rating of perceived exertion (RPE)  were collected throughout the protocol. Results: RSA performance was significantly impaired from set 1 to set 5 (fastest sprint time +4.1%, P < .001; cumulated sprint time +2.3%, P < .01). For a similar average number of balls played (12.8 [1.4]) during each set, number of balls targeted (−1.7%, P < .05) and passing accuracy (−3.1%, P < .05) decreased up to the third set before reimproving over the last 2 sets. Psychophysiological responses (HR, BLa, and RPE) progressively increased (P < .05) toward protocol cessation. The decrease in passing accuracy with increasing RSA cumulated sprint time was fitted to a 2nd-order polynomial function (r2 = .94, P < .05). Conclusion: Multiple-set RSA-induced fatigue was accompanied by passing-skill adjustment variation, suggesting a complex interaction between physiological and psychological/cognitive function to preserve passing skill under fatigued condition.

Hollville, Hirasawa, Husson, Rabita, and Brocherie are with the Laboratory of Sport, Expertise and Performance (EA 7370), Research Unit, and Le Croller, Pôle France Hockey sur Gazon, French Inst of Sport (INSEP), Paris, France.

Brocherie (franck.brocherie@insep.fr) is corresponding author.
International Journal of Sports Physiology and Performance

Article Sections

References

  • 1.

    Reilly TBorrie A. Physiology applied to field hockey. Sports Med. 1992;14(1):1026. PubMed ID: 1641540 doi:10.2165/00007256-199214010-00002

  • 2.

    Spencer MBishop DDawson BGoodman C. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35(12):10251044. PubMed ID: 16336007 doi:10.2165/00007256-200535120-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Morencos ERomero-Moraleda BCastagna CCasamichana D. Positional comparisons in the impact of fatigue on movement patterns in hockey. Int J Sports Physiol Perform. 2018;13(9):11491157. doi:10.1123/ijspp.2017-0506

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Spencer MLawrence SRechichi CBishop DDawson BGoodman C. Time-motion analysis of elite field hockey, with special reference to repeated-sprint activity. J Sports Sci. 2004;22(9):843850. PubMed ID: 15513278 doi:10.1080/02640410410001716715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jennings DCormack SJCoutts AJAughey RJ. GPS analysis of an international field hockey tournament. Int J Sports Physiol Perform. 2012;7(3):224231. PubMed ID: 22172642 doi:10.1123/ijspp.7.3.224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Girard OMendez-Villanueva ABishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673694. PubMed ID: 21780851 doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Mohr MKrustrup PBangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21(7):519528. PubMed ID: 12848386 doi:10.1080/0264041031000071182

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Carling CDupont G. Are declines in physical performance associated with a reduction in skill-related performance during professional soccer match-play? J Sports Sci. 2011;29(1):6371. PubMed ID: 21077004 doi:10.1080/02640414.2010.521945

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Rampinini EImpellizzeri FMCastagna CAzzalin AFerrari Bravo DWisloff U. Effect of match-related fatigue on short-passing ability in young soccer players. Med Sci Sports Exerc. 2008;40(5):934942. PubMed ID: 18408603 doi:10.1249/MSS.0b013e3181666eb8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sunderland CNevill ME. High-intensity intermittent running and field hockey skill performance in the heat. J Sports Sci. 2005;23(5):531540. PubMed ID: 16195001 doi:10.1080/02640410410001730197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lyons MAl-Nakeeb YNevill A. Performance of soccer passing skills under moderate and high-intensity localized muscle fatigue. J Strength Cond Res. 2006;20(1):197202. PubMed ID: 16503681

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McMorris TRayment T. Short-duration, high-intensity exercise and performance of a sports-specific skill: a preliminary study. Percept Mot Skills. 2007;105(2):523530. PubMed ID: 18065073 doi:10.2466/pms.105.2.523-530

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Royal KAFarrow DMujika IHalson SLPyne DAbernethy B. The effects of fatigue on decision making and shooting skill performance in water polo players. J Sports Sci. 2006;24(8):807815. PubMed ID: 16815774 doi:10.1080/02640410500188928

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Davey PRThorpe RDWilliams C. Fatigue decreases skilled tennis performance. J Sports Sci. 2002;20(4):311318. PubMed ID: 12003276 doi:10.1080/026404102753576080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Spencer MFitzsimons MDawson BBishop DGoodman C. Reliability of a repeated-sprint test for field-hockey. J Sci Med Sport. 2006;9(1–2):181184. PubMed ID: 16581293 doi:10.1016/j.jsams.2005.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Polglaze TDawson BButtfield APeeling P. Metabolic power and energy expenditure in an international men’s hockey tournament. J Sports Sci. 2018;36(2):140148. PubMed ID: 28282747 doi:10.1080/02640414.2017.1287933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Carr ADawson BSchneiker KGoodman CLay B. Effect of caffeine supplementation on repeated sprint running performance. J Sports Med Phys Fitness. 2008;48(4):472478. PubMed ID: 18997650

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Beckett JRSchneiker KTWallman KEDawson BTGuelfi KJ. Effects of static stretching on repeated sprint and change of direction performance. Med Sci Sports Exerc. 2009;41(2):444450. PubMed ID: 19127179 doi:10.1249/MSS.0b013e3181867b95

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 20.

    Girard ORacinais SKelly LMillet GPBrocherie F. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. Eur J Appl Physiol. 2011;111(10):25472555. PubMed ID: 21369733 doi:10.1007/s00421-011-1884-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Serpiello FRMcKenna MJStepto NKBishop DJAughey RJ. Performance and physiological responses to repeated-sprint exercise: a novel multiple-set approach. Eur J Appl Physiol. 2011;111(4):669678. PubMed ID: 20957389 doi:10.1007/s00421-010-1687-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Girard OBrocherie FMillet GP. Can analysis of performance and neuromuscular recoveries from repeated sprints shed more light on its fatigue-causing mechanisms? Front Physiol. 2015;6:5. PubMed ID: 25674064 doi:10.3389/fphys.2015.00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hureau TJOlivier NMillet GYMeste OBlain GM. Exercise performance is regulated during repeated sprints to limit the development of peripheral fatigue beyond a critical threshold. Exp Physiol. 2014;99(7):951963. PubMed ID: 24728680 doi:10.1113/expphysiol.2014.077974

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Brocherie FMillet GPMorin JBGirard O. Mechanical alterations to repeated treadmill sprints in normobaric hypoxia. Med Sci Sports Exerc. 2016;48(8):15701579. PubMed ID: 27031740 doi:10.1249/MSS.0000000000000937

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mendez-Villanueva AHamer PBishop D. Fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc. 2007;39(12):22192225. PubMed ID: 18046194 doi:10.1249/mss.0b013e31815669dc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Amann MDempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161173. PubMed ID: 17962334 doi:10.1113/jphysiol.2007.141838

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392400. PubMed ID: 19224911 doi:10.1136/bjsm.2008.050799

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):416420. PubMed ID: 8641377 doi:10.1007/BF01919309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Dupont GMillet GPGuinhouya CBerthoin S. Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol. 2005;95(1):2734. PubMed ID: 15976999 doi:10.1007/s00421-005-1382-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol. 2009;587(pt 23):55915600. PubMed ID: 19805739 doi:10.1113/jphysiol.2009.178350

  • 31.

    Ferguson BSRogatzki MJGoodwin MLKane DARightmire ZGladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol. 2018;118(4):691728. 29322250 doi:10.1007/s00421-017-3795-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):17251789. PubMed ID: 11581501 doi:10.1152/physrev.2001.81.4.1725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Akima HFoley JMPrior BMDudley GAMeyer RA. Vastus lateralis fatigue alters recruitment of musculus quadriceps femoris in humans. J Appl Physiol. 2002;92(2):679684. doi:10.1152/japplphysiol.00267.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Amann MBlain GMProctor LTSebranek JJPegelow DFDempsey JA. Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol. 2010;109(4):966976. doi:10.1152/japplphysiol.00462.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kitsantas AZimmerman BJ. Comparing self-regulatory processes among novice, non-expert, and expert volleyball players: a microanalytic study. J Appl Sport Psychol. 2002;14(2):91105. doi:10.1080/10413200252907761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Tomporowski PD. Effects of acute bouts of exercise on cognition. Acta Psychol. 2003;112(3):297324. doi:10.1016/S0001-6918(02)00134-8

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 22 22 7
Full Text Views 1 1 1
PDF Downloads 0 0 0

Altmetric Badge

PubMed

Google Scholar