Elite Male and Female 800-m Runners’ Display of Different Pacing Strategies During Season-Best Performances

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To analyze the pacing profiles of the world’s top 800-m annual performances between 2010 and 2016, comparing men’s and women’s strategies. Methods: A total of 142 performances were characterized for overall race times and 0-to-200-m, 200-to-400-m, 400-to-600-m, and 600-to-800-m split times using available footage from YouTube. Only the best annual performance for each athlete was considered. Overall race and split speed were calculated so that each lap speed could be expressed as a percentage of the mean race speed. Results: The mean speed of the men’s 800-m was 7.73 (0.06) m·s−1, with the 0-to-200-m split faster than the others. After the first split, the speed decreased significantly during the 3 subsequent splits (P < .001). The mean speed of the women’s 800-m was 6.77 (0.05) m·s−1, with a significative variation in speed during the race (P < .001). The first split was faster than the others (P < .001). During the rest of the race, speed was almost constant, and no difference was observed between the other splits. Comparison between men and women revealed that there was an interaction between split and gender (P < .001), showing a different pacing behavior in 800-m competitions. Conclusions: The world’s best 800-m performances revealed an important difference in the pacing profile between men and women. Tactics could play a greater role in this difference, but physiological and behavioral characteristics are likely also important.

Filipas, Bonato, and La Torre are with the Dept of Biomedical Sciences for Health, University of Milan, Milan, Italy. Nerli Ballati and Piacentini are with the Dept of Movement, Human and Health Sciences, University of Rome “Foro Italico,” Rome, Italy.

Filipas (luca.filipas@unimi.it) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Foster CSchrager MSnyder ACThompson NN. Pacing strategy and athletic performance. Sports Med. 1994;17(2):7785. PubMed ID: 8171225 doi:10.2165/00007256-199417020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Abbiss CRLaursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239252. PubMed ID: 18278984 doi:10.2165/00007256-200838030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Tucker RLambert MINoakes TD. An analysis of pacing strategies during men’s world-record performances in track athletics. Int J Sports Physiol Perform. 2006;1(3):233245. PubMed ID: 19116437 doi:10.1123/ijspp.1.3.233

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jones AMWhipp B. Bioenergetic constraints on tactical decision making in middle distance running. Br J Sports Med. 2002;36:102104. PubMed ID: 11916890 doi:10.1136/bjsm.36.2.102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sandford GNPearson SAllen SVet al. Tactical behaviors in men’s 800-m Olympic and World-Championship medalists: a changing of the guard. Int J Sports Physiol Perform. 2018;13:246249.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Renfree AMytton GJSkorski SSt Clair Gibson A. Tactical considerations in the middle-distance running events at the 2012 Olympic Games: a case study. Int J Sports Physiol Perform. 2014;9(2):362364. PubMed ID: 23921156 doi:10.1123/ijspp.2013-0020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Thiel CFoster CBanzer WDe Koning JJ. Pacing in Olympic track races: competitive tactics versus best performance strategy. J Sports Sci. 2012;30(11):11071115. PubMed ID: 22738897 doi:10.1080/02640414.2012.701759

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Duffield RDawson BGoodman C. Energy system contribution to 400-metre and 800-metre track running. J Sports Sci. 2005;23(3):299307. PubMed ID: 15966348 doi:10.1080/02640410410001730043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sandals LEWood DMDraper SBJames DV. Influence of pacing strategy on oxygen uptake during treadmill middle-distance running. Int J Sports Med. 2006;27(1):3742. PubMed ID: 16388440 doi:10.1055/s-2005-837468

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Billat VHamard LKoralsztein JPMorton RH. Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run. J Appl Physiol. 2009;107(2):478487. doi:10.1152/japplphysiol.91296.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Deaner ROAddona VCarter REJoyner MJHunter SK. Fast men slow more than fast women in a 10 kilometer road race. PeerJ. 2016;4(4):2235. doi:10.7717/peerj.2235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Deaner ROCarter REJoyner MJHunter SK. Men are more likely than women to slow in the marathon. Med Sci Sports Exerc. 2015;47:607616. PubMed ID: 24983344 doi:10.1249/MSS.0000000000000432

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Foster Cde Koning JJThiel C. Evolutionary pattern of improved 1-mile running performance. Int J Sports Physiol Perform. 2014;9(4):715719. PubMed ID: 24509568 doi:10.1123/ijspp.2013-0318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Mytton GJArcher DTThompson KGRenfree ASt Clair Gibson A. Validity and reliability of a 1500-m lap-time collection method using public videos. Int J Sports Physiol Perform. 2013;8(6):692694. PubMed ID: 23538450 doi:10.1123/ijspp.8.6.692

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Skorski SFaude OCaviezel SMeyer T. Reproducibility of pacing profiles in elite swimmers. Int J Sports Physiol Perform. 2014;9:217225. PubMed ID: 23689199 doi:10.1123/ijspp.2012-0258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Vogt PRüst CARosemann TLepers RKnechtle B. Analysis of 10 km swimming performance of elite male and female open-water swimmers. Springerplus. 2013;2(2):603. doi:10.1186/2193-1801-2-603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 18.

    Batterham AHopkins W. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1:5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

  • 19.

    Thompson K. Pacing: Individual Strategies for Optimal Performance. Champaign, IL: Human Kinetics; 2014.

  • 20.

    Bishop DBonetti DDawson B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med Sci Sports Exerc. 2002;34(6):10411047. PubMed ID: 12048335 doi:10.1097/00005768-200206000-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    de Koning JJFoster CLucia ABobbert MFHettinga FJPorcari JP. Using modeling to understand how athletes in different disciplines solve the same problem: swimming versus running versus speed skating. Int J Sports Physiol Perform. 2011;6(2):276280. PubMed ID: 21725112 doi:10.1123/ijspp.6.2.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Ferro ARivera APagola IFerreruela MMartin ARocandio V. Biomechanical analysis of the 7th World Championships in Athletics Seville 1999. IAAF New Stud Athl. 2001;16:2560.

    • Search Google Scholar
    • Export Citation
  • 23.

    Majumdar ASRobergs RA. The science of speed: determinants of performance in the 100 m sprint. Int J Sports Sci Coach. 2011;6(3):479493. doi:10.1260/1747-9541.6.3.479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Tucker RNoakes TD. The physiological regulation of pacing strategy during exercise: a critical review. Br J Sports Med. 2009;43(6):e1. PubMed ID: 19224909 doi:10.1136/bjsm.2009.057562

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Brandon LJ. Physiological factors associated with middle distance running performance. Sports Med. 1995;19(4):268277. PubMed ID: 7604199 doi:10.2165/00007256-199519040-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ingham SAWhyte GPPedlar CBailey DMDunman NNevill AM. Determinants of 800-m and 1500-m running performance using allometric models. Med Sci Sports Exerc. 2008;40(2):345350. PubMed ID: 18202566 doi:10.1249/mss.0b013e31815a83dc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    March DSVanderburgh PMTitlebaum PJHoops ML. Age, sex, and finish time as determinants of pacing in the marathon. J Strength Cond Res. 2011;25(2):386391. PubMed ID: 20224445 doi:10.1519/JSC.0b013e3181bffd0f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hubble CJinger Z. Gender differences in marathon pacing and performance prediction. J Sports Anal. 2016;2(1):1936. doi:10.3233/JSA-150008

  • 29.

    Hanley B. Pacing, packing and sex-based differences in Olympic and IAAF World Championship marathons. J Sports Sci. 2016;34(17):16751681. PubMed ID: 26736042 doi:10.1080/02640414.2015.1132841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Saavedra JMEscalante YGarcia-Hermoso AArellano RNavarro F. A 12-year analysis of pacing strategies in 200- and 400-m individual medley in international swimming competitions. J Strength Cond Res. 2012;26(12):32893296. PubMed ID: 22222324 doi:10.1519/JSC.0b013e318248aed5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Renfree ACrivoi do Carmo EMartin LPeters DM. The influence of collective behavior on pacing in endurance competitions. Front Physiol. 2015;6:373. PubMed ID: 26696903 doi:10.3389/fphys.2015.00373

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Konings MJSchoenmakers PPWalker AJHettinga FJ. The behavior of an opponent alters pacing decisions in 4-km cycling time trials. Physiol Behav. 2016;158:15. PubMed ID: 26896731 doi:10.1016/j.physbeh.2016.02.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Spencer MRGastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33(1):157162. PubMed ID: 11194103 doi:10.1097/00005768-200101000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 69 69 15
Full Text Views 1 1 1
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar
Cited By