Dose–Response Relationship Between Training Load and Changes in Aerobic Fitness in Professional Youth Soccer Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To compare the dose–response relationship between traditional arbitrary speed thresholds versus an individualized approach, with changes in aerobic fitness in professional youth soccer players. Methods: A total of 14 youth soccer players completed a 1500-m time trial to estimate maximal aerobic speed (MAS, km·h−1) at the start and at the end of a 6-week period. Training load was monitored on a daily basis during this study. External load measures were total distance covered and total acceleration and deceleration distance >2 m·s−2. Arbitrary high-speed running measures were meters covered and time spent at >17 km·h−1 (m > high-speed distance, t > high-speed distance) and 21 km·h−1 (m > very-high-speed distance, t > very-high-speed distance). Individualized high-speed running measures were meters covered and time spent at >MAS km·h−1 (m > MAS, t > MAS) and 30% anaerobic speed reserve (m > 30ASR, t > 30ASR). In addition, internal load measures were also collected: heart rate exertion and rating of perceived exertion. Linear regression analysis was used to establish the dose–response relationship between mean weekly training load and changes in aerobic fitness. Results: Very large associations were found between t > MAS and changes in aerobic fitness (R2 = .59). Large associations were found for t > 30ASR (R2 = .38) and m > MAS (R2 = .25). Unclear associations were found for all other variables. Conclusion: An individualized approach to monitoring training load, in particular t > MAS, may be a more appropriate method than using traditional arbitrary speed thresholds when monitoring the dose–response relationship between training load and changes in aerobic fitness.

The authors are with the Dept of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom. Fitzpatrick is also with Sports Science and Medical Dept, Newcastle United Football Club, Newcastle upon Tyne.

Fitzpatrick (john.fitzpatrick@nufc.co.uk) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Akubat I. Training load monitoring in soccer. In: Van Winckel J ed. Fitness in Soccer: The Science and Practical Application. Klein-Gelmen, Belgium: Moveo Ergo Sum; 2014:167184.

    • Search Google Scholar
    • Export Citation
  • 2.

    Banister EW. Modeling elite athletic performance. In: MacDougall JDWenger HAGreen HJ eds. Physiological Testing of Elite Athletes. Champaign, IL: Human Kinetics; 1991:403424.

    • Search Google Scholar
    • Export Citation
  • 3.

    Manzi VIellamo FImpellizzeri FD’ottavio SCastagna C. Relation between individualized training impulses and performance in distance runners. Med Sci Sports Exerc. 2009;41(11):2090. PubMed ID: 19812506 doi:10.1249/MSS.0b013e3181a6a959

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Malone JJDi Michele RMorgans RBurgess DMorton JPDrust B. Seasonal training-load quantification in elite English premier league soccer players. Int J Sports Physiol Perform. 2015;10(4):489497. PubMed ID: 25393111 doi:10.1123/ijspp.2014-0352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Owen ALWong DPPaul DDellal A. Effects of a periodized small-sided game training intervention on physical performance in elite professional soccer. J Strength Cond Res. 2012;26(10):27482754. PubMed ID: 23001394 doi:10.1519/JSC.0b013e318242d2d1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Nédélec MMcCall ACarling CLegall FBerthoin SDupont G. Recovery in soccer: part 1—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):9971015. PubMed ID: 23046224 doi:10.2165/11635270-000000000-00000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273280. PubMed ID: 26758673 doi:10.1136/bjsports-2015-095788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Impellizzeri FMRampinini EMarcora SM. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23(6):583592. PubMed ID: 16195007 doi:10.1080/02640410400021278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Akubat IPatel EBarrett SAbt G. Methods of monitoring the training and match load and their relationship to changes in fitness in professional youth soccer players. J Sports Sci. 2012;30(14):14731480. PubMed ID: 22857397 doi:10.1080/02640414.2012.712711

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Thorpe RTStrudwick AJBuchheit MAtkinson GDrust BGregson W. Monitoring fatigue during the in-season competitive phase in elite soccer players. Int J Sports Physiol Perform. 2015;10(8):958964. PubMed ID: 25710257 doi:10.1123/ijspp.2015-0004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Scott DLovell R. Individualisation of speed thresholds does not enhance the dose-response determination in football training. J Sports Sci. 2018;36(13):15231532. PubMed ID: 29099673 doi:10.1080/02640414.2017.1398894

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Abt GLovell R. The use of individualized speed and intensity thresholds for determining the distance run at high-intensity in professional soccer. J Sports Sci. 2009;27(9):893898. PubMed ID: 19629838 doi:10.1080/02640410902998239

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lucia AHoyos JSantalla AEarnest CChicharro JL. Tour de France versus Vuelta a España: which is harder? Med Sci Sports Exerc. 2003;35(5):872878. PubMed ID: 12750600 doi:10.1249/01.MSS.0000064999.82036.B4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Harley JABarnes CAPortas Met al. Motion analysis of match-play in elite U12 to U16 age-group soccer players. J Sports Sci. 2010;28(13):13911397. PubMed ID: 20967674 doi:10.1080/02640414.2010.510142

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hunter FBray JTowlson Cet al. Individualisation of time-motion analysis: a method comparison and case report series. Int J Sports Med. 2015;36(1):4148. PubMed ID: 25259591

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Weston M. Difficulties in determining the dose-response nature of competitive soccer matches. J Athl Enhanc. 2013;2(1):12. doi:10.4172/2324-9080.1000e107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Mendez-Villanueva ABuchheit MSimpson BBourdon PC. Match play intensity distribution in youth soccer. Int J Sports Med. 2013;34(2):101110. PubMed ID: 22960988

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bundle MWHoyt RWWeyand PG. High-speed running performance: a new approach to assessment and prediction. J Appl Physiol. 2003;95(5):19551962. PubMed ID: 14555668 doi:10.1152/japplphysiol.00921.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bangsbo J. Energy demands in competitive soccer. J Sports Sci. 1994;12:512. PubMed ID: 8072065

  • 20.

    Stølen TChamari KCastagna CWisløff U. Physiology of soccer. Sports Med. 2005;35(6):501536. doi:10.2165/00007256-200535060-00004

  • 21.

    Buchheit MSimpson MAl Haddad HBourdon PMendez-Villanueva A. Monitoring changes in physical performance with heart rate measures in young soccer players. Eur J Appl Physiol. 2012;112(2):711723. PubMed ID: 21656232 doi:10.1007/s00421-011-2014-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Dupont GAkakpo KBerthoin S. The effect of in-season, high-intensity interval training in soccer players. J Strength Cond Res. 2004;18(3):584589. PubMed ID: 15320689

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lorenzen CWilliams MDTurk PSMeehan DLKolsky DJC. Relationship between velocity reached at VO2max and time-trial performances in elite Australian Rules footballers. Int J Sports Physiol Perform. 2009;4(3):408411. PubMed ID: 19953828 doi:10.1123/ijspp.4.3.408

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Bellenger CRFuller JTNelson MJHartland MBuckley JDDebenedictis TA. Predicting maximal aerobic speed through set distance time-trials. Eur J Appl Physiol. 2015;115(12):25932598. PubMed ID: 26242778 doi:10.1007/s00421-015-3233-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Akenhead RFrench DThompson KGHayes PR. The acceleration dependent validity and reliability of 10 Hz GPS. J Sci Med Sport. 2014;17(5):562566. PubMed ID: 24041579 doi:10.1016/j.jsams.2013.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Varley MCFairweather IHAughey RJ. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J Sports Sci. 2012;30(2):121127. PubMed ID: 22122431 doi:10.1080/02640414.2011.627941

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Edwards S. The Heart Rate Monitor Book. New York, NY: Polar Electro Oy; 1993.

  • 28.

    Foster CDaines EHector LSnyder ACWelsh R. Athletic performance in relation to training load. Wis Med J. 1996;95(6):370374. PubMed ID: 8693756

  • 29.

    Hopkins WG. Spreadsheets for analysis of controlled trials, crossovers and time series. Sportscience. 2017;21:14.

  • 30.

    Hopkins WGMarshall SBatterham AHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed ID: 15705040 doi:10.1519/15184.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Akenhead RNassis GP. Training load and player monitoring in high-level football: current practice and perceptions. Int J Sports Physiol Perform. 2016;11(5):587593. PubMed ID: 26456711 doi:10.1123/ijspp.2015-0331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Jones CMGriffiths PCMellalieu SD. Training load and fatigue marker associations with injury and illness: a systematic review of longitudinal studies. Sports Med. 2017;47(5):943974. PubMed ID: 27677917 doi:10.1007/s40279-016-0619-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Billat VLFlechet BPetit BMuriaux GKoralsztein JP. Interval training at V˙O2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc. 1999;31(1):156163. PubMed ID: 9927024 doi:10.1097/00005768-199901000-00024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Akenhead RHarley JATweddle SP. Examining the external training load of an English Premier League football team with special reference to acceleration. J Strength Cond Res. 2016;30(9):24242432. PubMed ID: 26817740 doi:10.1519/JSC.0000000000001343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 141 141 29
Full Text Views 8 8 2
PDF Downloads 7 7 1
Altmetric Badge
PubMed
Google Scholar
Cited By