Effects of Athlete-Dependent Traits on Joint and System Countermovement-Jump Power

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To establish the influence of athlete-dependent characteristics on the generation and timing of system and individual joint powers during a countermovement jump (CMJ). Methods: Male national representative athletes from volleyball (n = 7), basketball (n = 6), and rugby (n = 7) performed a set of 3 CMJs at relative barbell loads of 0%, 10%, 20%, 30%, and 40% of absolute back-squat strength. Ground-reaction forces and joint kinematics were captured using a 16-camera motion-capture system integrated with 2 in-ground force plates. Limb lengths and cross-sectional areas were defined using 3-dimensional photonic scans. A repeated-measures analysis of variance determined the interaction between system and joint load–power profiles, whereas a multiregression analysis defined the explained variance of athlete-dependent characteristics on the load that maximized system power. Results: System and isolated hip, knee, and ankle peak powers were maximized across a spectrum of loads between and within sports; power values were not significantly different across loads. A positive shift in the timing of hip and ankle peak powers corresponded to a significant (P < .05) positive shift in the timing of system peak power to occur closer to toe-off. An optimal 3-input combination of athlete-dependent characteristics accounted for 68% (P < .001) of the explained variance in the load that maximized system peak power. Conclusion: The load maximizing system power is athlete-dependent, with a mixture of training and heredity-related characteristics influencing CMJ load–power profiles. The authors recommend that a combination of relative loads be individually prescribed to maximize the generation and translation of system CMJ power.

Williams is with Strength and Conditioning; Chapman, Physiology; and Phillips, Movement Science, Australian Inst of Sport, Bruce, Australia. Williams, Chapman, and Ball are with the Research Inst for Sport and Exercise, University of Canberra, Bruce, Australia. Williams is also with the School of Education, Flinders University, Bedford Park, Australia.

Williams (kym.williams@flinders.edu.au) is corresponding author.
  • 1.

    Stone MH, O’Bryant HS, McCoy L, Coglianese R, Lehmkuhl M, Schilling B. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J Strength Cond Res. 2003;17(1):140147. PubMed ID: 12580669 doi:10.1519/1533-4287(2003)017<0140:PAMSRD>2.0.CO;2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hill A. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci. 1938;126(843):136195. doi:10.1098/rspb.1938.0050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Abbott B, Wilkie D. The relation between velocity of shortening and the tension-length curve of skeletal muscle. J Physiol. 1953;120(1–2):214223. PubMed ID: 13062233 doi:10.1113/jphysiol.1953.sp004886

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bobbert MF. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? J Appl Physiol. 2012;112(12):19751983. PubMed ID: 22442026 doi:10.1152/japplphysiol.00787.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cormie P, McBride JM, McCaulley GO. Power-time, force-time, and velocity-time curve analysis during the jump squat: impact of load. J Appl Biomech. 2008;24(2):112120. PubMed ID: 18579903 doi:10.1123/jab.24.2.112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cormie P, McCaulley GO, Triplett NT, McBride J. Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc. 2007;39(2):340349. PubMed ID: 17277599 doi:10.1249/01.mss.0000246993.71599.bf

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    McBride JM, Haines TL, Kirby TJ. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats. J Sports Sci. 2011;29(11):12151221. PubMed ID: 21777152 doi:10.1080/02640414.2011.587444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):13181326. PubMed ID: 12235031 doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Aagaard P, Andersen JL, Dyhre-Poulsen P, et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol. 2001;534(2):613623. PubMed ID: 11454977 doi:10.1111/j.1469-7793.2001.t01-1-00613.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Giroux C, Rabita G, Chollet D, Guilhem G. Optimal balance between force and velocity differs among world-class athletes. J Appl Biomech. 2015;32(1):5968. PubMed ID: 26398964 doi:10.1123/jab.2015-0070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Simoneau J-A, Bouchard C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 1995;9(11):10911095. PubMed ID: 7649409 doi:10.1096/fasebj.9.11.7649409

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Izquierdo M, Häkkinen K, Gonzalez-Badillo JJ, Ibanez J, Gorostiaga EM. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol. 2002;87(3):264271. PubMed ID: 12111288 doi:10.1007/s00421-002-0628-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jaric S, Mirkov D, Markovic G. Normalizing physical performance tests for body size: a proposal for standardization. J Strength Cond Res. 2005;19(2):467. PubMed ID: 15903392 doi:10.1519/R-15064.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wakeling JM, Blake OM, Chan HK. Muscle coordination is key to the power output and mechanical efficiency of limb movements. J Exp Biol. 2010;213(3):487492. PubMed ID: 20086134 doi:10.1242/jeb.036236

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Bobbert MF. Why do people jump the way they do? Exerc Sport Sci Rev. 2001;29(3):95102. PubMed ID: 11474963 doi:10.1097/00003677-200107000-00002

  • 16.

    Bobbert MF, van Ingen Schenau GJ. Coordination in vertical jumping. J Biomech. 1988;21(3):249262. PubMed ID: 3379084 doi:10.1016/0021-9290(88)90175-3

  • 17.

    Chiu LZ, Bryanton MA, Moolyk AN. Proximal-to-distal sequencing in vertical jumping with and without arm swing. J Strength Cond Res. 2014;28(5):11951202. PubMed ID: 24476777 doi:10.1519/JSC.0000000000000388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jandacka D, Uchytil J, Farana R, Zahradnik D, Hamill J. Lower extremity power during the squat jump with various barbell loads. Sports Biomech. 2014;13(1):7586. PubMed ID: 24968512 doi:10.1080/14763141.2013.872287

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Moir GL, Gollie JM, Davis SE, Guers JJ, Witmer CA. The effects of load on system and lower-body joint kinetics during jump squats. Sports Biomech. 2012;11(4):492506. PubMed ID: 23259239 doi:10.1080/14763141.2012.725426

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue J Phys Educ Recreat Dance. 1993;64(1):8890.

  • 21.

    Epley B. Poundage chart. In: Boyd E. Boyd Epley Workout. Lincoln, NE: Body Enterprises; 1985:86.

  • 22.

    Landers J. Maximum based on reps NSCA J. 1985;6(6):6061.

  • 23.

    Lombardi VP. Beginning Weight Training: The Safe and Effective Way. William C Brown; 1989.

  • 24.

    O’Connor R, O’Connor B, Simmons J, O’Shea P. Weight Training Today. Thomson Learning. 1989.

  • 25.

    Reynolds JM, Gordon TJ, Robergs RA. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Cond Res. 2006;20(3):584592. PubMed ID: 16937972 doi:10.1519/R-15304.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wang J, Gallagher D, Thornton JC, Yu W, Horlick M, Pi-Sunyer FX. Validation of a 3-dimensional photonic scanner for the measurement of body volumes, dimensions, and percentage body fat. Am J Clin Nutr. 2006;83(4):809816. PubMed ID: 16600932 doi:10.1093/ajcn/83.4.809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Marek SM, Cramer JT, Fincher AL, Massey LL. Acute effects of static and proprioceptive neuromuscular facilitation stretching on muscle strength and power output. J Athl Train. 2005;40(2):94. PubMed ID: 15970955

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Halperin I, Williams KJ, Martin DT, Chapman DW. The effects of attentional focusing instructions on force production during the isometric midthigh pull. J Strength Cond Res. 2016;30(4):919923. PubMed ID: 27003451 doi:10.1519/JSC.0000000000001194

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Besier TF, Sturnieks DL, Alderson JA, Lloyd DG. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech. 2003;36(8):11591168. PubMed ID: 12831742 doi:10.1016/S0021-9290(03)00087-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    De Leva P. Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J Biomech. 1996;29(9):12231230. PubMed ID: 8872282 doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Winter DA. Kinematics. 2nd ed. Hoboken, NJ: John Wiley & Sons; 2005.

  • 32.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Laurence Erlbaum Associates; 1988.

  • 33.

    Argus CK, Gill ND, Keogh JW, Hopkins WG, Street L. Assessing the variation in the load that produces maximal upper-body power. J Strength Cond Res. 2013;28(1):240244. doi:10.1519/JSC.0b013e318295d1c9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Driss T, Driss T, Vandewalle H, Quièvre J, Miller C, Monod H. Effects of external loading on power output in a squat jump on a force platform: a comparison between strength and power athletes and sedentary individuals. J Sports Sci. 2001;19(2):99105. PubMed ID: 11217015 doi:10.1080/026404101300036271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on the load-power relationship. Med Sci Sports Exerc. 2007;39(6):9961003. PubMed ID: 17545891 doi:10.1097/mss.0b013e3180408e0c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 203 182 16
Full Text Views 12 12 0
PDF Downloads 6 6 0