Improvement of Flutter-Kick Performance in Novice Surface Combat Swimmers With Increased Hip Strength

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To examine strength, range of motion, anthropometric, and physiological contributions to novice surface-combat-swimming (sCS) performance and establish differences from freestyle-swimming (FS) performance to further understand the transition of FS to sCS performance. Methods: A total of 13 competitive swimmers (7 male and 6 female; 27.7 [2.3] y; 176.2 [2.6] cm; 75.4 [3.9] kg) completed 8 testing sessions consisting of the following: physiological land-based measurements for maximal anaerobic and aerobic capacity and upper- and lower-extremity strength and range of motion, an sCS anaerobic capacity swim test measuring peak and mean force and fatigue index, 2 aerobic capacity tests measuring maximal aerobic capacity for both FS and sCS, and four 500-m performance swims for time, 1 FS, and 3 sCS. Separate multiple linear-regression analysis was used to analyze predictors of both sCS and FS performance models. Results: FS performance was predicted by the final FS maximal oxygen uptake with an R2 of 42.03% (F1,10 = 7.25; P = .0226), whereas sCS performance was predicted by isometric hip-extension peak strength with an R2 of 41.46% (F1,11 = 7.79; P = .0176). Conclusions: Results demonstrate that different physiological characteristics predict performance, suggesting that an altered strategy is used for novice sCS than FS. It is suggested that this may be due to the added constraints as mandated by mission requirements including boots, weighted gear, and clandestine requirements with hips lowered beneath the surface. Further research should examine the kinematics of the sCS flutter kick to improve performance by developing training strategies specific for the task.

The authors are with Neuromuscular Research Laboratory and Warrior Human Performance Research Center, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA. Nagai is also with the Mayo Clinic, Rochester, MN.

Connaboy (connaboy@pitt.edu) is corresponding author.
  • 1.

    Naval Special Warfare Recruiting Directorate, Final Research Findings. San Diego, CA; 2009.

  • 2.

    Pyne DB, Sharp RL. Physical and energy requirements of competitive swimming events. Int J Sport Nutr Exerc Metab. 2014;24(4):351–359. PubMed ID: 25029351 doi:10.1123/ijsnem.2014-0047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cochrane KC, Housh TJ, Smith CM, et al. Relative contributions of strength, anthropometric, and body composition characteristics to estimated propulsive force in young male swimmers. J Strength Cond Res. 2015;29(6):1473–1479. PubMed ID: 25785708 doi:10.1519/JSC.0000000000000942

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Costa MJ, Bragada JA, Marinho DA, Silva AJ, Barbosa TM. Longitudinal interventions in elite swimming: a systematic review based on energetics, biomechanics, and performance. J Strength Cond Res. 2012;26(7):2006–2016. PubMed ID: 22531620 doi:10.1519/JSC.0b013e318257807f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kolmogorov SV, Duplishcheva OA. Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity. J Biomech. 1992;25(3):311–318. doi:10.1016/0021-9290(92)90028-Y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mollendorf JC, Termin AC 2nd, Oppenheim E, Pendergast DR. Effect of swim suit design on passive drag. Med Sci Sports Exerc. 2004;36(6):1029–1035. PubMed ID: 15179173 doi:10.1249/01.MSS.0000128179.02306.57

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Pendergast D, Mollendorf J, Zamparo P, Termin A 2nd, Bushnell D, Paschke D. The influence of drag on human locomotion in water. Undersea Hyperb Med. 2005;32(1):45–57. PubMed ID: 15796314

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cortesi M, Fantozzi S, Di Michele R, Zamparo P, Gatta G. Passive drag reduction using full-body swimsuits: the role of body position. J Strength Cond Res. 2014;28(11):3164–3171. PubMed ID: 24796982 doi:10.1519/JSC.0000000000000508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gatta G, Zamparo P, Cortesi M. Effect of swim cap model on passive drag. J Strength Cond Res. 2013;27(10):2904–2908. PubMed ID: 23287832 doi:10.1519/JSC.0b013e318280cc3a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Di Prampero PE, Pendergast DR, Wilson DW, Rennie DW. Energetics of swimming in man. J Appl Physiol. 1974;37(1):1–5. PubMed ID: 4836558 doi:10.1152/jappl.1974.37.1.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Prusaczyk WK, Stuster JW, Goforth HW Jr, Sopchick Smith T, Meyer LT. Physical Demands of U.S. Navy Sea–Air–Land (SEAL) Operations. San Diego, CA: Naval Health Research Center; 1995.

    • Search Google Scholar
    • Export Citation
  • 12.

    Deuster PA, ed. The Navy SEAL Physical Fitness Guide. 1997.

  • 13.

    Valaik DJ. A Review of Manned Thermal Garment Diving Studies with Lessons Learned for the SDV Operator and Combat Swimmer. Naval Medical Research Institute; 1996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Prusaczyk W, Goforth H, Sopchick Smith T, Griffith P, Schneider K. Thermal and Physiological Responses of Basic Underwater Demolition/SEAL (BUD/S) Students to a 5.5-Mile Open-Ocean Swim. Report No. 93–27. Naval Health Research Center; 1994.

    • Search Google Scholar
    • Export Citation
  • 15.

    Power J, Simões Ré A, Barwood M, Tikuisis P, Tipton M. Reduction in predicted survival times in cold water due to wind and waves. Appl Ergon. 2015;49:18–24. PubMed ID: 25766418 doi:10.1016/j.apergo.2015.01.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bowes H, Eglin CM, Tipton MJ, Barwood MJ. Swim performance and thermoregulatory effects of wearing clothing in a simulated cold-water survival situation. Eur J Appl Physiol. 2016;116(4):759–767. PubMed ID: 26825101 doi:10.1007/s00421-015-3306-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Morrison JB. Oxygen uptake studies of divers when fin swimming with maximum effort at depths of 6-176 feet. Aerosp Med. 1973;44(10):1120–1129. PubMed ID: 4518623

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Walters KC, Gould MT, Bachrach EA, Butler FK Jr. Screening for oxygen sensitivity in U.S. Navy combat swimmers. Undersea Hyperb Med. 2000;27(1):21–26. PubMed ID: 10813436

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Reilly T, Morris T, Whyte G. The specificity of training prescription and physiological assessment: a review. J Sports Sci. 2009;27(6):575–589. PubMed ID: 19340630 doi:10.1080/02640410902729741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Willems TM, Cornelis JA, De Deurwaerder LE, Roelandt F, De Mits S. The effect of ankle muscle strength and flexibility on dolphin kick performance in competitive swimmers. Hum Mov Sci. 2014;36:167–176. PubMed ID: 24984154 doi:10.1016/j.humov.2014.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kelln BM, McKeon PO, Gontkof LM, Hertel J. Hand-held dynamometry: reliability of lower extremity muscle testing in healthy, physically active, young adults. J Sport Rehabil. 2008;17(2):160–170. PubMed ID: 18515915 doi:10.1123/jsr.17.2.160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Fieseler G, Molitor T, Irlenbusch L, et al. Intrarater reliability of goniometry and hand-held dynamometry for shoulder and elbow examinations in female team handball athletes and asymptomatic volunteers. Arch Orthop Trauma Surg. 2015;135(12):1719–1726. PubMed ID: 26386839 doi:10.1007/s00402-015-2331-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Youdas JW, Bogard CL, Suman VJ. Reliability of goniometric measurements and visual estimates of ankle joint active range of motion obtained in a clinical setting. Arch Phys Med Rehabil. 1993;74(10):1113–1118. PubMed ID: 8215866 doi:10.1016/0003-9993(93)90071-H

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Wilcox CRJ, Osgood CT, White HSF, Vince RV. Investigating strength and range of motion of the hip complex in ice hockey athletes. J Sport Rehabil. 2015;24(3):300–306. PubMed ID: 25611955 doi:10.1123/jsr.2014-0175

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Bar-Or O. The Wingate anaerobic test: an update on methodology, reliability and validity. Sports Med. 1987;4(6):381–394. doi:10.2165/00007256-198704060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    McInnis KJ, Balady GJ. Comparison of submaximal exercise responses using the Bruce vs modified Bruce protocols. Med Sci Sports Exerc. 1994;26(1):103–107. PubMed ID: 8133729 doi:10.1249/00005768-199401000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Morouço PG, Marinho DA, Keskinen KL, Badillo JJ, Marques MC. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance. J Strength Cond Res. 2014;28(11):3093–3099. PubMed ID: 24796981 doi:10.1519/JSC.0000000000000509

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Nagle EF, Sanders ME, Gibbs BB, et al. Reliability and accuracy of a standardized shallow water running test to determine cardiorespiratory fitness. J Strength Cond Res. 2017;31(6):1669–1677. PubMed ID: 28538319 doi:10.1519/JSC.0000000000001638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kalva-Filho CA, Campos EZ, Andrade VL, et al. Relationship of aerobic and anaerobic parameters with 400 m front crawl swimming performance. Biol Sport. 2015;32(4):333–337. PubMed ID: 28479663 doi:10.5604/20831862.1188611

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Laffite LP, Vilas-Boas JP, Demarle A, Silva J, Fernandes R, Billat VL. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can J Appl Physiol. 2004;29(S1):17–31. doi:10.1139/h2004-055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Ribeiro J, Figueiredo P, Sousa A, et al. VO2 kinetics and metabolic contributions during full and upper body extreme swimming intensity. Eur J Appl Physiol. 2015;115(5):1117–1124. PubMed ID: 25547736 doi:10.1007/s00421-014-3093-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Atkison RR, Dickey JP, Dragunas A, Nolte V. Importance of sagittal kick symmetry for underwater dolphin kick performance. Hum Mov Sci. 2014;33:298–311. PubMed ID: 24290609 doi:10.1016/j.humov.2013.08.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kounalakis SN, Kostoulas I, Havenetidis K, Giossos I, Paxinos T. Cadets’ swimming and running performance with and without a combat uniform. Aviat Space Environ Med. 2014;85(1):39–45. PubMed ID: 24479257 doi:10.3357/ASEM.3527.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Blazevich A. Fluid dynamics—drag. In: Sports Biomechanics: The Basics: Optimising Human Performance. Vol 2. Bloomsbury; 2010:136–153.

    • Search Google Scholar
    • Export Citation
  • 35.

    Blazevich A. Hydrodynamics—drag. In: Sports Biomechanics: The Basics: Optimising Human Performance. Vol 2. Bloomsbury; 2010:154–166.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 92 92 9
Full Text Views 3 3 0
PDF Downloads 1 1 0