Factors Affecting Match Outcome in Elite Australian Football: A 14-Year Analysis

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Effects of fixture and team characteristics on match outcome in elite Australian football were quantified using data accessed at AFLtables.com for 5109 matches for seasons 2000 to 2013. Aspects of each match included number of days’ break between matches (≤7 d vs ≥8 d), location (home vs away), travel status (travel vs no travel), and differences between opposing teams’ mean age, body mass, and height (expressed as quintiles). A logistic-regression version of the generalized mixed linear model estimated each effect, which was assessed with magnitude-based inference using 1 extra win or loss in every 10 matches as the smallest important change. For every 10 matches played, the effects were days’ break, 0.1 ± 0.3 (90% CL) wins; playing away, 1.5 ± 0.6 losses; traveling, 0.7 ± 0.6 losses; and being in the oldest, heaviest, or shortest, quintile, 1.9 ± 0.4, 1.3 ± 0.4, and 0.4 ± 0.4 wins, respectively. The effects of age and body-mass difference were not reduced substantially when adjusted for each other. All effects were clear, mostly at the 99% level. The effects of playing away, travel, and age difference were not unexpected, but the trivial effect of days’ break and the advantage of a heavier team will challenge current notions about balancing training with recovery and about team selection.

The authors are with the Inst of Sport, Exercise, and Active living (ISEAL), Victoria University, Melbourne, Australia.

Aughey (robert.aughey@vu.edu.au) is corresponding author.
  • 1.

    Stewart B, Nicholson M, Dickson G. The Australian Football League’s recent progress: a study in cartel conduct and monopoly power. Sport Manage Rev. 2005;8:95–117. doi:10.1016/S1441-3523(05)70035-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Kelly VG, Coutts AJ. Planning and monitoring training loads during the competition phase in team sports. Strength Cond J. 2007;29:32–37. doi:10.1519/00126548-200708000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Clarke SR. Home advantage in the Australian football league. J Sports Sci. 2005;23:375–385. PubMed doi:10.1080/02640410500074391

  • 4.

    Richmond LK, Dawson B, Stewart G, Cormack S, Hillman DR, Eastwood PR. The effect of interstate travel on the sleep patterns and performance of elite Australian rules footballers. J Sci Med Sport. 2007;10(4):252–258. PubMed doi:10.1016/j.jsams.2007.03.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Rowbottom D, Pickering D. The effects of travel on team performance in the Australian Football League. Paper presented at: Sports Medicine and Physical Education International Congress on Sport Science; 2000; Brisbane, Australia.

    • Export Citation
  • 6.

    Gastin PB, Fahrner B, Meyer D, Robinson D, Cook JL. Influence of physical fitness, age, experience, and weekly training load on match performance in elite Australian football. J Strength Cond Res. 2013;27:1272–1279. PubMed doi:10.1519/JSC.0b013e318267925f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Woodman L, Pyke F. Periodisation of Australian football training. Sports Coach. 1991;14:32–39.

  • 8.

    Cormack SJ, Newton RU, McGuigan MR. Neuromuscular and endocrine responses of elite players to an Australian rules football match. Int J Sports Physiol Perform. 2008;3:359–374. PubMed doi:10.1123/ijspp.3.3.359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Takarada Y. Evaluation of muscle damage after a rugby match with special reference to tackle plays. Br J Sports Med. 2003;37:416–419. PubMed doi:10.1136/bjsm.37.5.416

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Leatherwood WE, Dragoo JL. Effect of airline travel on performance: a review of the literature. Br J Sports Med. 2013;47:561–567. PubMed doi:10.1136/bjsports-2012-091449

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bishop D. The effects of travel on team performance in the Australian national netball competition. J Sci Med Sport. 2004;7:118–122. PubMed doi:10.1016/S1440-2440(04)80050-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jehue R, Street D, Huizenga R. Effect of time zone and game time changes on team performance: National Football League. Med Sci Sports Exerc. 1993;25:127–131. PubMed doi:10.1249/00005768-199301000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Young WB, Newton RU, Doyle T, et al. Physiological and anthropometric characteristics of starters and non-starters and playing positions in elite Australian rules football: a case study. J Sci Med Sport. 2005;8:333–345. PubMed doi:10.1016/S1440-2440(05)80044-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Keogh J. The use of physical fitness scores and anthropometric data to predict selection in an elite under 18 Australian rules football team. J Sci Med Sport. 1999;2:125–133. PubMed doi:10.1016/S1440-2440(99)80192-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bilsborough JC, Greenway K, Opar D, et al. Comparison of anthropometry, upper body strength and lower body power characteristics in different levels of Australian football players. J Strength Cond Res. 2015;29:826–834. PubMed doi:10.1519/JSC.0000000000000682

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Norton KI, Craig N, Olds T. The evolution of Australian football. J Sci Med Sport. 1999;2:389–404. PubMed doi:10.1016/S1440-2440(99)80011-5

  • 17.

    Bilsborough JC, Greenway K, Livingston S, Cordy J, Coutts AJ. Changes in anthropometry, upper-body strength, and nutrient intake in professional Australian football players during a season. Int J Sports Physiol Perform. 2016;11:290–300. PubMed doi:10.1123/ijspp.2014-0447

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Robertson SJ, Joyce DG. Informing in-season tactical periodisation in team sport: development of a match difficulty index for Super Rugby. J Sports Sci. 2015;33:99–107. PubMed doi:10.1080/02640414.2014.925572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Higham DG, Hopkins WG, Pyne DB, Anson JM. Performance indicators related to points scoring and winning in international rugby sevens. J Sports Sci Med. 2014;13:358–364. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Josman C, Gupta R, Robertson S. Fixture difficulty and team performance models for use in the Australian Football League. Paper presented at: The 13th Australasian Conference on Mathematics and Computers in Sport; July 11–13, 2016. Melbourne, Australia.

    • Export Citation
  • 22.

    Pollard R. Home advantage in soccer: a retrospective analysis. J Sports Sci. 1986;4:237–248. PubMed doi:10.1080/02640418608732122

  • 23.

    Pollard R. Worldwide regional variations in home advantage in association football. J Sports Sci. 2006;24:231–240. PubMed doi:10.1080/02640410500141836

  • 24.

    Watson J. Australian Football League: “home advantage,” “umpire bias” or both? Sport Bus Manage. 2013;3:176–188. doi:10.1108/SBM-11-2011-0086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Worthen J, Wade C. Direction of travel and visiting team athletic performance: support for a circadian dysrhythmia hypothesis. J Sport Behav. 1999;22:279–287.

    • Search Google Scholar
    • Export Citation
  • 26.

    Goumas C. Home advantage in Australian soccer. J Sci Med Sport. 2014;17:119–123. PubMed doi:10.1016/j.jsams.2013.02.014

  • 27.

    Waterhouse J, Reilly T, Edwards B. The stress of travel. J Sports Sci. 2004;22:946–966. PubMed doi:10.1080/02640410400000264

  • 28.

    Youngstedt SD, O’Connor PJ. The influence of air travel on athletic performance. Sports Med. 1999;28:197–207. PubMed doi:10.2165/00007256-199928030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Halson SL. Sleep and the elite athlete. Sports Sci. 2013;26:1–4.

  • 30.

    Smith DR, Ciacciarelli A, Serzan J, Lambert D. Travel and the home advantage in professional sports. Sociol Sport J. 2000;17:364–385. doi:10.1123/ssj.17.4.364

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Muhm JM, Rock PB, McMullin DL, et al. Effect of aircraft-cabin altitude on passenger discomfort. N Engl J Med. 2007;357:18–27. PubMed doi:10.1056/NEJMoa062770

  • 32.

    Aughey RJ, Elias GP, Esmaeili A, Lazarus B, Stewart AM. Does the recent internal load and strain on players affect match outcome in elite Australian football? J Sci Med Sport. 2015;19:182–186. PubMed doi:10.1016/j.jsams.2015.02.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Sung YT, Tainsky S. The National Football League wagering market: simple strategies and bye week–related inefficiencies. J Sports Econom. 2014;15:365–384. doi:10.1177/1527002512466557

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Veale JP, Pearce AJ, Koehn S, Carlson JS. Performance and anthropometric characteristics of prospective elite junior Australian footballers: a case study in one junior team. J Sci Med Sport. 2008;11:227–230. PubMed doi:10.1016/j.jsams.2006.12.119

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 67 67 12
Full Text Views 4 4 1
PDF Downloads 1 1 0