Overground-Propulsion Kinematics and Acceleration in Elite Wheelchair Rugby

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Maximal acceleration from standstill has been identified as a key performance indicator in wheelchair rugby; however, the impact of classification and kinematic variables on performance has received limited attention. This study aimed to investigate kinematic variables during maximal acceleration, with level of activity limitation accounted for using sport-classification scores. Methods: Based on their sporting classification scores, which reflect combined trunk, arm, and hand function, 25 elite wheelchair rugby players were analyzed in high-, mid-, and low-point groups before completing five 5-m sprints from a stationary position. Inertial measurement units and video analysis were used to monitor key kinematic variables. Results: Significant differences in kinematic variables were evident across the classification groups, particularly for the first stroke-contact angle (1-way ANOVA F2,122 = 51.5, P < .05) and first stroke time (F2,124 = 18.3, P < .05). High-point players used a first stroke-contact angle that was closer to top dead center of the wheel than either other group, while also using a shorter overall stroke time than low-point players. A linear mixed-effects model was used to investigate how kinematic variables influenced performance, with results suggesting that increased release angles (ie, farther around the wheel) and decreased stroke angles resulted in larger peak accelerations. Further investigation revealed that these results are likely influenced by strong relationships for the high-point group, as there was often no clear trend evident for midpoint and low-point groups. Conclusion: Findings show that various propulsion approaches exist across classification groups, with this information potentially informing individual wheelchair setups and training programs.

Haydon, Grimshaw, and Robertson are with the School of Mechanical Engineering, University of Adelaide, Adelaide, Australia. Pinder is with the Australian Paralympic Committee, Adelaide, Australia.

Haydon (david.haydon@adelaide.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Crespo-Ruiz BMDel Ama-Espinosa AJGil-Agudo AM. Relation between kinematic analysis of wheelchair propulsion and wheelchair functional basketball classificiation. Adapt Phys Activ Q. 2011;28(2):157172. PubMed doi:10.1123/apaq.28.2.157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Moss ADFowler NEGoosey-Tolfrey VL. The intra-push velocity profile of the over-ground racing wheelchair sprint start. J Biomech. 2005;38(1):1522. PubMed doi:10.1016/j.jbiomech.2004.03.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Boninger MLSouza ALCooper RAFitzgerald SGKoontz AMFay BT. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion. Arch Phys Med Rehabil. 2002;83(5):718723. PubMed doi:10.1053/apmr.2002.32455

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    West CRCampbell IGGoosey-Tolfrey VLMason BSRomer LM. Effects of abdominal binding on field-based exercise responses in Paralympic athletes with cervical spinal cord injury. J Sci Med Sport. 2014;17(4):351355. PubMed doi:10.1016/j.jsams.2013.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vanlandewijck YCThompson WR. The Paralympic Athlete. Chichester, UK: Wiley-Blackwell; 2011.

  • 6.

    Molik BLubelska EKoxmol ABogdan MYilla ABHyla E. An examination of the International Wheelchair Rugby Federation classification system utilizing parameters of offensive game efficiency. Adapt Phys Activ Q. 2008;25:335351. PubMed doi:10.1123/apaq.25.4.335

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    International Paralympic Committee. Explanatory Guide to Paralympic Classification. Bonn, Germany: International Paralympic Committee; 2015.

    • Search Google Scholar
    • Export Citation
  • 8.

    International Wheelchair Rugby Federation. International Wheelchair Rugby Federation Classification Manual. 3rd ed. 2015. Available from: http://www.iwrf.com/resources/iwrf_docs/IWRF_Classification_Manual_3rd_Edition_rev-2015_%28English%29.pdf.

    • Search Google Scholar
    • Export Citation
  • 9.

    Santos PBVigário PSMainenti MRFerreira ASLemos T. Seated limits-of-stability of athletes with disabilities with regard to competitive levels and sport classification. Scand J Med Sci Sports. 2017;27(12):20192026. PubMed doi:10.1111/sms.12847

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Altmann VCHart ANewell EUngerer G. Characteristics of sport classes. In: Erasmus J ed. IWRF Classification Manual. 3rd ed. Delta, Canada: International Wheelchair Rugby Federation; 2015:2528.

    • Search Google Scholar
    • Export Citation
  • 11.

    Vanlandewijck YCTheisen DDaly DJ. Wheelchair propulsion biomechanics: implications for wheelchair sports. Sports Med. 2001;31(5):339367. PubMed doi:10.2165/00007256-200131050-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    van der Slikke RMBerger MAMBregman DJJVeeger HEJ. From big data to rich data: the key features of athlete wheelchair mobility performance. J Biomech. 2016;49(14):33403346. PubMed doi:10.1016/j.jbiomech.2016.08.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mason BPorcellato Lvan der Woude LHGoosey-Tolfrey VL. A qualitative examination of wheelchair configuration for optimal mobility performance in wheelchair sports: a pilot study. J Rehabil Med. 2010;42(2):141149. doi:10.2340/16501977-0490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Usma-Alvarez CC. Systems Design Methodology for Personalised Design Customisation of Sports Wheelchairs [dissertation]. Melbourne Australia: RMIT University; 2013.

    • Search Google Scholar
    • Export Citation
  • 15.

    Rhodes JMMason BSMalone LAGoosey-Tolfrey VL. Effect of team rank and player classification on activity profiles of elite wheelchair rugby players. J Sports Sci. 2015;33(19):20702078. PubMed doi:10.1080/02640414.2015.1028087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sporner MLGrindle GGKelleher ATeodorski EECooper RCooper RA. Quantification of activity during wheelchair basketball and rugby at the National Veterans Wheelchair Games: a pilot study. Prosthet Orthot Int. 2009;33(3):210217. PubMed doi:10.1080/03093640903051816

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Vanlandewijck YCVerellen JTweedy S. Towards evidence-based classification in wheelchair sports: impact of seating position on wheelchair acceleration. J Sports Sci. 2011;29(10):10891096. PubMed doi:10.1080/02640414.2011.576694

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mason Bvan der Woude LTolfrey KGoosey-Tolfrey V. The effects of rear-wheel camber on maximal effort mobility performance in wheelchair athletes. Int J Sports Med. 2012;33(3):199204. PubMed doi:10.1055/s-0031-1295443

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mason BLemstra Mvan der Woude LHVegter RGoosey-Tolfrey VL. Influence of wheel configuration on wheelchair basketball performance: wheel stiffness, tyre type and tyre orientation. Med Eng Phys. 2015;37(4):392399. PubMed doi:10.1016/j.medengphy.2015.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gil-Agudo ADel Ama-Espinosa APérez-Rizo EPérez-Nombela SPablo Rodríguez-Rodríguez L. Upper limb joint kinetics during manual wheelchair propulsion in patients with different levels of spinal cord injury. J Biomech. 2010;43(13):25082515. PubMed doi:10.1016/j.jbiomech.2010.05.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    van der Woude LHBouw Avan Wegen Jvan As HVeeger Dde Groot S. Seat height: effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation. J Rehabil Med. 2009;41(3):143149. PubMed doi:10.2340/16501977-0296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mason BLenton JLeicht CGoosey-Tolfrey V. A physiological and biomechanical comparison of over-ground, treadmill and ergometer wheelchair propulsion. J Sports Sci. 2014;32(1):7891. PubMed doi:10.1080/02640414.2013.807350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stephens CLEngsberg JR. Comparison of overground and treadmill propulsion patterns of manual wheelchair users with tetraplegia. Disabil Rehabil Assist Technol. 2010;5(6):420427. PubMed doi:10.3109/17483101003793420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Altmann VCGroen BEHart ALVanlandewijck YCvan Limbeek JKeijsers NLW. The impact of trunk impairment on performance-determining activities in wheelchair rugby. Scand J Med Sci Sports. 2017;27(9):10051014. doi:10.1111/sms.12720

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sanderson DJSommer HJ. Kinematic features of wheelchair propulsion. J Biomech. 1985;18(6):423429. PubMed doi:10.1016/0021-9290(85)90277-5

  • 26.

    van der Slikke RMBerger MABregman DJLagerberg AHVeeger HE. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration. J Biomech. 2015;48(12):33983405. PubMed doi:10.1016/j.jbiomech.2015.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Damsted CLarsen LHNielsen RO. Reliability of video-based identification of footstrike pattern and video time frame at initial contact in recreational runners. Gait Posture. 2015;42(1):3235. PubMed doi:10.1016/j.gaitpost.2015.01.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Robertson DGE. Research Methods in Biomechanics. Champaign, IL: Human Kinetics;2004:320.

  • 29.

    Tsai CYLin CJHuang YCLin PCSu FC. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion. J BioMed Eng. 2012;11:87. PubMed doi:10.1186/1475-925X-11-87

    • Search Google Scholar
    • Export Citation
  • 30.

    Perini TAde Oliveira GLOrnellas JSde Oliveira FP. Technical error of measurement in anthropometry. Braz J Sports Med. 2005;11(1):8690.

    • Search Google Scholar
    • Export Citation
  • 31.

    Duthie GPyne DHooper S. The reliability of video based time motion analysis. J Hum Mov Stud. 2003;44(3):259271.

  • 32.

    Mullineaux DRBartlett RMBennett S. Research design and statistics in biomechanics and motor control. J Sports Sci. 2001;19(10):739760. PubMed doi:10.1080/026404101317015410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Haydon DSPinder RAGrimshaw PNRobertson WSP. Elite wheelchair rugby: a quantitative analysis of chair configuration in Australia. Sports Eng. 2016;19(3):177184. doi:10.1007/s12283-016-0203-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Pinder RAHeadrick JOudejans RRD. Issues and challenges in developing representative tasks in sport. In: Baker JFarrow D eds. Routledge Handbook of Sport Expertise. London, UK: Routledge; 2015:269281.

    • Search Google Scholar
    • Export Citation
  • 35.

    Mason Bvan der Woude LHGoosey-Tolfrey VL. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports. Sports Med. 2013;43(1):2338. PubMed doi:10.1007/s40279-012-0005-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 50 50 15
Full Text Views 2 2 1
PDF Downloads 2 2 1
Altmetric Badge
PubMed
Google Scholar
Cited By