Overground-Propulsion Kinematics and Acceleration in Elite Wheelchair Rugby

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Maximal acceleration from standstill has been identified as a key performance indicator in wheelchair rugby; however, the impact of classification and kinematic variables on performance has received limited attention. This study aimed to investigate kinematic variables during maximal acceleration, with level of activity limitation accounted for using sport-classification scores. Methods: Based on their sporting classification scores, which reflect combined trunk, arm, and hand function, 25 elite wheelchair rugby players were analyzed in high-, mid-, and low-point groups before completing five 5-m sprints from a stationary position. Inertial measurement units and video analysis were used to monitor key kinematic variables. Results: Significant differences in kinematic variables were evident across the classification groups, particularly for the first stroke-contact angle (1-way ANOVA F2,122 = 51.5, P < .05) and first stroke time (F2,124 = 18.3, P < .05). High-point players used a first stroke-contact angle that was closer to top dead center of the wheel than either other group, while also using a shorter overall stroke time than low-point players. A linear mixed-effects model was used to investigate how kinematic variables influenced performance, with results suggesting that increased release angles (ie, farther around the wheel) and decreased stroke angles resulted in larger peak accelerations. Further investigation revealed that these results are likely influenced by strong relationships for the high-point group, as there was often no clear trend evident for midpoint and low-point groups. Conclusion: Findings show that various propulsion approaches exist across classification groups, with this information potentially informing individual wheelchair setups and training programs.

Haydon, Grimshaw, and Robertson are with the School of Mechanical Engineering, University of Adelaide, Adelaide, Australia. Pinder is with the Australian Paralympic Committee, Adelaide, Australia.

Haydon (david.haydon@adelaide.edu.au) is corresponding author.
  • 1.

    Crespo-Ruiz BM, Del Ama-Espinosa AJ, Gil-Agudo AM. Relation between kinematic analysis of wheelchair propulsion and wheelchair functional basketball classificiation. Adapt Phys Activ Q. 2011;28(2):157–172. PubMed doi:10.1123/apaq.28.2.157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Moss AD, Fowler NE, Goosey-Tolfrey VL. The intra-push velocity profile of the over-ground racing wheelchair sprint start. J Biomech. 2005;38(1):15–22. PubMed doi:10.1016/j.jbiomech.2004.03.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Boninger ML, Souza AL, Cooper RA, Fitzgerald SG, Koontz AM, Fay BT. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion. Arch Phys Med Rehabil. 2002;83(5):718–723. PubMed doi:10.1053/apmr.2002.32455

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    West CR, Campbell IG, Goosey-Tolfrey VL, Mason BS, Romer LM. Effects of abdominal binding on field-based exercise responses in Paralympic athletes with cervical spinal cord injury. J Sci Med Sport. 2014;17(4):351–355. PubMed doi:10.1016/j.jsams.2013.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vanlandewijck YC, Thompson WR. The Paralympic Athlete. Chichester, UK: Wiley-Blackwell; 2011.

  • 6.

    Molik B, Lubelska E, Koxmol A, Bogdan M, Yilla AB, Hyla E. An examination of the International Wheelchair Rugby Federation classification system utilizing parameters of offensive game efficiency. Adapt Phys Activ Q. 2008;25:335–351. PubMed doi:10.1123/apaq.25.4.335

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    International Paralympic Committee. Explanatory Guide to Paralympic Classification. Bonn, Germany: International Paralympic Committee; 2015.

    • Search Google Scholar
    • Export Citation
  • 8.

    International Wheelchair Rugby Federation. International Wheelchair Rugby Federation Classification Manual. 3rd ed. 2015. Available from: http://www.iwrf.com/resources/iwrf_docs/IWRF_Classification_Manual_3rd_Edition_rev-2015_%28English%29.pdf.

    • Search Google Scholar
    • Export Citation
  • 9.

    Santos PB, Vigário PS, Mainenti MR, Ferreira AS, Lemos T. Seated limits-of-stability of athletes with disabilities with regard to competitive levels and sport classification. Scand J Med Sci Sports. 2017;27(12):2019–2026. PubMed doi:10.1111/sms.12847

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Altmann VC, Hart A, Newell E, Ungerer G. Characteristics of sport classes. In: Erasmus J, ed. IWRF Classification Manual. 3rd ed. Delta, Canada: International Wheelchair Rugby Federation; 2015:25–28.

    • Search Google Scholar
    • Export Citation
  • 11.

    Vanlandewijck YC, Theisen D, Daly DJ. Wheelchair propulsion biomechanics: implications for wheelchair sports. Sports Med. 2001;31(5):339–367. PubMed doi:10.2165/00007256-200131050-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    van der Slikke RM, Berger MAM, Bregman DJJ, Veeger HEJ. From big data to rich data: the key features of athlete wheelchair mobility performance. J Biomech. 2016;49(14):3340–3346. PubMed doi:10.1016/j.jbiomech.2016.08.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mason B, Porcellato L, van der Woude LH, Goosey-Tolfrey VL. A qualitative examination of wheelchair configuration for optimal mobility performance in wheelchair sports: a pilot study. J Rehabil Med. 2010;42(2):141–149. doi:10.2340/16501977-0490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Usma-Alvarez CC. Systems Design Methodology for Personalised Design Customisation of Sports Wheelchairs [dissertation]. Melbourne, Australia: RMIT University; 2013.

    • Search Google Scholar
    • Export Citation
  • 15.

    Rhodes JM, Mason BS, Malone LA, Goosey-Tolfrey VL. Effect of team rank and player classification on activity profiles of elite wheelchair rugby players. J Sports Sci. 2015;33(19):2070–2078. PubMed doi:10.1080/02640414.2015.1028087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sporner ML, Grindle GG, Kelleher A, Teodorski EE, Cooper R, Cooper RA. Quantification of activity during wheelchair basketball and rugby at the National Veterans Wheelchair Games: a pilot study. Prosthet Orthot Int. 2009;33(3):210–217. PubMed doi:10.1080/03093640903051816

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Vanlandewijck YC, Verellen J, Tweedy S. Towards evidence-based classification in wheelchair sports: impact of seating position on wheelchair acceleration. J Sports Sci. 2011;29(10):1089–1096. PubMed doi:10.1080/02640414.2011.576694

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mason B, van der Woude L, Tolfrey K, Goosey-Tolfrey V. The effects of rear-wheel camber on maximal effort mobility performance in wheelchair athletes. Int J Sports Med. 2012;33(3):199–204. PubMed doi:10.1055/s-0031-1295443

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mason B, Lemstra M, van der Woude LH, Vegter R, Goosey-Tolfrey VL. Influence of wheel configuration on wheelchair basketball performance: wheel stiffness, tyre type and tyre orientation. Med Eng Phys. 2015;37(4):392–399. PubMed doi:10.1016/j.medengphy.2015.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gil-Agudo A, Del Ama-Espinosa A, Pérez-Rizo E, Pérez-Nombela S, Pablo Rodríguez-Rodríguez L. Upper limb joint kinetics during manual wheelchair propulsion in patients with different levels of spinal cord injury. J Biomech. 2010;43(13):2508–2515. PubMed doi:10.1016/j.jbiomech.2010.05.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    van der Woude LH, Bouw A, van Wegen J, van As H, Veeger D, de Groot S. Seat height: effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation. J Rehabil Med. 2009;41(3):143–149. PubMed doi:10.2340/16501977-0296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mason B, Lenton J, Leicht C, Goosey-Tolfrey V. A physiological and biomechanical comparison of over-ground, treadmill and ergometer wheelchair propulsion. J Sports Sci. 2014;32(1):78–91. PubMed doi:10.1080/02640414.2013.807350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stephens CL, Engsberg JR. Comparison of overground and treadmill propulsion patterns of manual wheelchair users with tetraplegia. Disabil Rehabil Assist Technol. 2010;5(6):420–427. PubMed doi:10.3109/17483101003793420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Altmann VC, Groen BE, Hart AL, Vanlandewijck YC, van Limbeek J, Keijsers NLW. The impact of trunk impairment on performance-determining activities in wheelchair rugby. Scand J Med Sci Sports. 2017;27(9):1005–1014. doi:10.1111/sms.12720

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sanderson DJ, Sommer HJ. Kinematic features of wheelchair propulsion. J Biomech. 1985;18(6):423–429. PubMed doi:10.1016/0021-9290(85)90277-5

  • 26.

    van der Slikke RM, Berger MA, Bregman DJ, Lagerberg AH, Veeger HE. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration. J Biomech. 2015;48(12):3398–3405. PubMed doi:10.1016/j.jbiomech.2015.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Damsted C, Larsen LH, Nielsen RO. Reliability of video-based identification of footstrike pattern and video time frame at initial contact in recreational runners. Gait Posture. 2015;42(1):32–35. PubMed doi:10.1016/j.gaitpost.2015.01.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Robertson DGE. Research Methods in Biomechanics. Champaign, IL: Human Kinetics;2004:320.

  • 29.

    Tsai CY, Lin CJ, Huang YC, Lin PC, Su FC. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion. J BioMed Eng. 2012;11:87. PubMed doi:10.1186/1475-925X-11-87

    • Search Google Scholar
    • Export Citation
  • 30.

    Perini TA, de Oliveira GL, Ornellas JS, de Oliveira FP. Technical error of measurement in anthropometry. Braz J Sports Med. 2005;11(1):86–90.

    • Search Google Scholar
    • Export Citation
  • 31.

    Duthie G, Pyne D, Hooper S. The reliability of video based time motion analysis. J Hum Mov Stud. 2003;44(3):259–271.

  • 32.

    Mullineaux DR, Bartlett RM, Bennett S. Research design and statistics in biomechanics and motor control. J Sports Sci. 2001;19(10):739–760. PubMed doi:10.1080/026404101317015410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Haydon DS, Pinder RA, Grimshaw PN, Robertson WSP. Elite wheelchair rugby: a quantitative analysis of chair configuration in Australia. Sports Eng. 2016;19(3):177–184. doi:10.1007/s12283-016-0203-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Pinder RA, Headrick J, Oudejans RRD. Issues and challenges in developing representative tasks in sport. In: Baker J, Farrow D, eds. Routledge Handbook of Sport Expertise. London, UK: Routledge; 2015:269–281.

    • Search Google Scholar
    • Export Citation
  • 35.

    Mason B, van der Woude LH, Goosey-Tolfrey VL. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports. Sports Med. 2013;43(1):23–38. PubMed doi:10.1007/s40279-012-0005-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 61 61 14
Full Text Views 2 2 0
PDF Downloads 2 2 0