Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Critical power (CP) and anaerobic work capacity (AWC) from the CP test represent distinct parameters related to metabolic characteristics of the whole body and active muscle tissue, respectively. Purpose: To examine the contribution of whole-body composition characteristics and local lean mass to further elucidate the differences in metabolic characteristics between CP and AWC as they relate to whole body and local factors. Methods: Fifteen anaerobically trained men were assessed for whole-body (% body fat and mineral-free lean mass [LBM]) and local mineral-free thigh lean mass (TLM) composition characteristics. CP and AWC were determined from the 3-min all-out CP test. Statistical analyses included Pearson product–moment correlations and stepwise multiple-regression analyses (P ≤ .05). Results: Only LBM contributed significantly to the prediction of CP (CP = 2.3 [LBM] + 56.7 [r2 = .346, standard error of the estimate (SEE) = 31.4 W, P = .021]), and only TLM to AWC (AWC = 0.8 [TLM] + 3.7 [r2 = .479, SEE = 2.2 kJ, P = .004]). Conclusions: The aerobic component (CP) of the CP test was most closely related to LBM, and the anaerobic component (AWC) was more closely related to the TLM. These findings support the theory that CP and AWC are separate measures of whole-body metabolic capabilities and the energy stores in the activated local muscle groups, respectively. Thus, training programs to improve CP and AWC should be designed to include resistance-training exercises to increase whole-body LBM and local TLM.

Byrd, Switalla, Eastman, Clasey, and Bergstrom are with the Dept of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY. Wallace is with Kinesiology Dept, University of Wisconsin Oshkosh, Oshkosh, WI.

Byrd (mark.travis.byrd@uky.edu) is corresponding author.
  • 1.

    Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8:329–338. doi:10.1080/00140136508930810

  • 2.

    Moritani T, Nagata A, deVries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24:339–350. PubMed doi:10.1080/00140138108924856

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hughson RL, Orok CJ, Staudt LE. A high velocity treadmill running test to assess endurance running potential. Int J Sports Med. 1984;5(1):23–25. PubMed doi:10.1055/s-2008-1025875

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kennedy MD, Bell GJ. A comparison of critical velocity estimates to actual velocities in predicting simulated rowing performance. Can J Appl Physiol. 2000;25(4):223–235. PubMed doi:10.1139/h00-017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wakayoshi K, Ikuta K, Yoshida T, et al. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol Occup Physiol. 1992a;64(2):153–157. PubMed doi:10.1007/BF00717953

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Vanhatalo A, McNaughton LR, Siegler J, Jones AM. Influence of induced alkalosis on the power–duration relationship of all-out exercise. Med Sci Sports Exerc. 2010;42(3):563–570. PubMed doi:10.1249/MSS.0b013e3181b71a4a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Nebelsick-Gullett LJ, Housh TJ, Johnson GO, Bauge SM. A comparison between methods of measuring anaerobic work capacity. Ergonomics. 1988;31(10):1413–1419. PubMed doi:10.1080/00140138808966785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vandewalle H, Kapitaniak B, Grün S, Raveneau S, Monod H. Comparison between a 30-s all-out test and a time-work test on a cycle ergometer. Eur J Appl Physiol Occup Physiol. 1989;58(4):375–381. PubMed doi:10.1007/BF00643512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Miura A, Endo M, Sato H, Sato H, Barstow TJ, Fukuba Y. Relationship between the curvature constant parameter of the power–duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans. Eur J Appl Physiol. 2002;87(3):238–244. PubMed doi:10.1007/s00421-002-0623-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Smith JC, Stephens DP, Hall EL, Jackson AW, Earnest CP. Effect of oral creatine ingestion on parameters of the work rate–time relationship and time to exhaustion in high-intensity cycling. Eur J Appl Physiol. 1998;77:360–365. doi:10.1007/s004210050345

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Miura A, Sato H, Sato H, Whipp BJ, Fukuba Y. The effect of glycogen depletion on the curvature constant parameter of the power–duration curve for cycle ergometry. Ergonomics. 2000;43:133–141. PubMed doi:10.1080/001401300184693

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sports Sci Rev. 1996;25:35–70.

  • 13.

    Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31:1265–1279. PubMed doi:10.1080/00140138808966766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fleg JL, Lakatta EG. Role of muscle loss in the age-associated reduction in VO2 max. J Appl Physiol. 1988;65(3):1147–1151. PubMed

  • 15.

    Hochachka PW. Fuels and pathways as designed systems for support of muscle work. J Exp Biol. 1985;115(1):149–164.

  • 16.

    Visser M, Fuerst T, Lang T, Salamone L, Harris TB; Body Composition Working Group. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. J Appl Physiol. 1999;87(4):1513–1520. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Bergstrom HC, Housh TJ, Zuniga JM, et al. A new single work bout test to estimate critical power and anaerobic work capacity. J Strength Cond Res. 2012;26(3):656–663. PubMed doi:10.1519/JSC.0b013e31822b7304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Clark IE, Murray SR, Pettitt RW. Alternative procedures for the three-minute all-out exercise test. J Strength Cond Res. 2013;27(8):2104–2112. PubMed doi:10.1519/JSC.0b013e3182785041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pedhauzer EJ. Multiple Regression in Behavior: Explanation and Prediction. 3rd ed. Fort Worth, TX: Harcourt College Publishers; 1997.

  • 20.

    Häkkinen K, Keskinen KL. Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters. Eur J Appl Physiol Occup Physiol. 1989;59(3):215–220. doi:10.1007/BF02386190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Potteiger JA, Smith DL, Maier ML, Foster TS. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in Division I men’s hockey athletes. J Strength Cond Res. 2010;24(7):1755–1762. PubMed doi:10.1519/JSC.0b013e3181e06cfb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mayhew JL, Piper FC, Schwegler TM, Ball TE. Contributions of speed, agility and body composition to anaerobic power measurement in college football players. J Strength Cond Res. 1989;3(4):101–106. doi:10.1519/00124278-198911000-00004

    • Search Google Scholar
    • Export Citation
  • 23.

    McClave SA, LeBlanc M, Hawkins SA. Sustainability of critical power determined by a 3-minute all-out test in elite cyclists. J Strength Cond Res. 2011;25(11):3093–3098. PubMed doi:10.1519/JSC.0b013e318212dafc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548–555. PubMed doi:10.1249/mss.0b013e31802dd3e6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Housh TJ, Thorland WG, Johnson GO, Hughes RA, Cisar CJ. Body composition and body build variables as predictors of middle distance running performance. J Sports Med Phys Fitness. 1986;26:258–262. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Housh TJ, Thorland WG, Pohnson GO, Hughes RA, Cisar CJ. The contribution of selected physiological variables to middle distance running performance. J Sports Med Phys Fitness. 1988;28(1):20–26. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Vanhatalo A, Black MI, DiMenna FJ, et al. The mechanistic bases of the power–time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol. 2016;594:4407–4423. PubMed doi:10.1113/JP271879

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 70 70 8
Full Text Views 23 23 4
PDF Downloads 12 12 5