Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To analyze the reliability and validity of a field computation method based on easy-to-measure data to assess the mean force (F¯) and velocity (v¯) produced during a ballistic bench-press movement and to verify that the force–velocity profile (F–v) obtained with multiple loaded trials is accurately described. Methods: Twelve participants performed ballistic bench presses against various lifted mass from 30% to 70% of their body mass. For each trial, F¯ and v¯ were determined from an accelerometer (sampling rate 500 Hz; reference method) and a simple computation method based on upper-limb mass, barbell flight height, and push-off distance. These F¯ and v¯ data were used to establish the F–v relationship for each individual and method. Results: A strong to almost perfect reliability was observed between the 2 trials (ICC > .90 for F¯ and .80 for v¯, CV% < 10%), whatever the considered method. The mechanical variables (F¯, v¯) measured with the 2 methods and all the variables extrapolated from the F–v relationships were strongly correlated (r2 > .80, P < .001). The practical differences between the methods for the extrapolated mechanical parameters were all <5%, indicating very probably no differences. Conclusion: The findings suggest that the simple computation method used here provides valid and reliable information on force and velocity produced during ballistic bench press, in line with that observed in laboratory conditions. This simple method is thus a practical tool, requiring only 3 simple parameters (upper-limb mass, barbell flight height, and push-off distance).

Rahmani and Morel are with the Movement, Interactions, Performance Laboratory, Le Mans University, Le Mans, France. Samozino is with the Interuniversity Laboratory of Motricity Biology, Savoie Mont Blanc University, Chambéry, France. Morin is with the Human Motricity, Education, Sport, Health Laboratory, Côte d’Azur University, Nice, France.

Rahmani (abdel.rahmani@univ-lemans.fr) is corresponding author.
  • 1.

    Sreckovic S, Cuk I, Djuric S, Nedeljkovic A, Mirkov D, Jaric S. Evaluation of force–velocity and power–velocity relationship of arm muscles. Eur J Appl Physiol. 2015;115(8):1779–1787. PubMed doi:10.1007/s00421-015-3165-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    McMaster DT, Gill ND, Cronin JB, McGuigan MR. Force-velocity-power assessment in semiprofessional rugby union players. J Strength Cond Res. 2016;30(4):1118–1126. PubMed doi:10.1519/JSC.0b013e3182a1da46

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    García-Ramos A, Jaric S, Padial P, Feriche B. Force–velocity relationship of upper body muscles: traditional versus ballistic bench press. J Appl Biomech. 2016;32(2):178–185. doi:10.1123/jab.2015-0162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Young KP, Haff GG, Newton RU, Gabbett TJ, Sheppard JM. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes. Int J Sports Physiol Perform. 2015;10(2):232–237. PubMed doi:10.1123/ijspp.2014-0073

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Rahmani A, Rambaud O, Bourdin M, Mariot JP. A virtual model of the bench press exercise. J Biomech. 2009;42(11):1610–1615. PubMed doi:10.1016/j.jbiomech.2009.04.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rambaud O, Rahmani A, Moyen B, Bourdin M. Importance of upper-limb inertia in calculating concentric bench press force. J Strength Cond Res. 2008;22(2):383–389. PubMed doi:10.1519/JSC.0b013e31816193e7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jandaĉka D, Vaverka F. Validity of mechanical power output measurement at bench press exercise. J Hum Kinet. 2009;21(1):33–40. doi:10.2478/v10078-09-0004-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    García-Ramos A, Padial P, García-Ramos M, et al. Reliability analysis of traditional and ballistic bench press exercises at different loads. J Hum Kinet. 2015;47:51–59. PubMed doi:10.1515/hukin-2015-0061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Garnacho-Castaño MV, López-Lastra S, Maté-Muñoz JL. Reliability and validity assessment of a linear position transducer. J Sport Sci Med. 2014;14(1):128–136. PubMed

    • Search Google Scholar
    • Export Citation
  • 10.

    Cronin JB, Hing RD, McNair PJ. Reliability and validity of a linear position transducer for measuring jump performance. J Strength Cond Res. 2004;18(3):590–593. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nigg BM, Herzog W. Biomechanics of the Musculo-Skeletal System. Hoboken, NJ: John Wiley & Sons; 2007.

  • 12.

    Walsh MS, Ford KR, Bangen KJ, Myer GD, Hewett TE. The validation of a portable force plate for measuring force–time data during jumping and landing tasks. J Strength Cond Res. 2006;20(4):730–734. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Macht JW, Abel MG, Mullineaux DR, Yates JW. Development of 1RM prediction equations for bench press in moderately trained men. J Strength Cond Res. 2016;30(10):2901–2906. PubMed doi:10.1519/JSC.0000000000001385

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force–velocity profile in ballistic movements—altius: citius or fortius? Med Sci Sports Exerc. 2012;44(2):313–322. PubMed doi:10.1249/MSS.0b013e31822d757a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kawamori N, Haff GG. The optimal training load for the development of muscular power. J Strength Cond Res. 2004;18(3):675–684. PubMed

  • 16.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267–272. PubMed doi:10.1123/ijspp.2015-0638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force–velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35(6):505–510. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Samozino P, Morin JB, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech. 2008;41(14):2940–2945. PubMed doi:10.1016/j.jbiomech.2008.07.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Giroux C, Rabita G, Chollet D, Guilhem G. What is the best method for assessing lower limb force–velocity relationship? Int J Sports Med. 2014;36(2):143–149. PubMed doi:10.1055/s-0034-1385886

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Jimenez-Reyes P, Samozino P, Pareja-Blanco F, et al. Validity of a simple method for measuring force-velocity-power profile in countermovement jump. Int J Sports Physiol Perform. 2017;12(1):36–43. PubMed doi:10.1123/IJSPP.2015-0484

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stanton R, Kean CO, Scanlan AT. My Jump for vertical jump assessment. Br J Sports Med. 2015;49(17):1157–1158. PubMed doi:10.1136/bjsports-2015-094831

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Winter DA. Muscle mechanics. In: Biomechanics and Motor Control of Human Movement. New York, NY: John Wiley & Sons; 1990:165–189.

  • 23.

    Vandewalle H, Peres G, Heller J, Panel J, Monod H. Force–velocity relationship and maximal power on a cycle ergometer. Eur J Appl Physiol. 1987;56:650–656. doi:10.1007/BF00424805

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Atkinson G, Nevill A. Statistical methods for assssing measurement error (reliability) in variables relevant to sports medicine. Sport Med. 1998;26(4):217–238. doi:10.2165/00007256-199826040-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Drinkwater E, Galna B, McKenna M, Hunt P, Pyne D. Validation of an optical encoder during free weight resistance movements and analysis of bench press sticking point power during fatigue. J Strength Cond Res. 2007;21(2):510–517. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Liow DK, Hopkins WG. Velocity specificity of weight training for kayak sprint performance. Med Sci Sports Exerc. 2003;35(7):1232–1237. PubMed doi:10.1249/01.MSS.0000074450.97188.CF

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Rahmani A, Viale F, Dalleau G, Lacour JR. Force/velocity and power/velocity relationships in squat exercise. Eur J Appl Physiol. 2001;84(3):227–232. PubMed doi:10.1007/PL00007956

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sport Exerc. 2009;41(1):3–13. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Alemany JA, Pandorf CE, Montain SJ, Castellani JW, Tuckow AP, Nindl BC. Reliability assessment of ballistic jump squats and bench throws. J Strength Cond Res. 2005;19(1):33–38. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Comstock BA, Solomon-Hill G, Flanagan SD, et al. Validity of the Myotest® in measuring force and power production in the squat and bench press. J Strength Cond Res. 2011;25(8):2293–2297. PubMed doi:10.1519/JSC.0b013e318200b78c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bosco C, Belli A, Astrua M, et al. A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol Occup Physiol. 1995;70(5):379–386. PubMed doi:10.1007/BF00618487

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Bosco C, Luhtanen P, Komi PV. A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol Occup Physiol. 1983;50(2):273–282. PubMed doi:10.1007/BF00422166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cross MR, Brughelli M, Samozino P, Brown SR, Morin JB. Optimal loading for maximizing power during sled-resisted sprinting. Int J Sports Physiol Perform. 2017;12(8):1069–1077. PubMed doi:10.1123/ijspp.2016-0362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Jimenez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force–velocity profiling during jumping. Front Physiol. 2016;7:677. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 118 118 22
Full Text Views 3 3 0
PDF Downloads 0 0 0