Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Cross-country mountain biking (XCO) is a popular high-intensity endurance cycling event, but XCO pacing strategy has not been fully examined. This study examined the pacing strategies of different XCO athletes during a laboratory-simulated XCO performance test. Brazilian cyclists classified as performance-cohort level 3 performed an XCO race simulation. The simulation consisted of four 10-km laps with a gradient of 0–10%. No group-vs-time interaction was found in lap time (P = .169), absolute (P = .719) and relative (P = .607) power output, ratings of perceived exertion (P = .182), or heart rate (P = .125). There was a time main effect, as athletes decreased power output by 0.3 W/kg throughout the XCO simulation, thereby resulting in a 1.6-min decrement per lap. The power output corresponding to the onset of blood lactate accumulation adequately represented the mean power of the first lap. These results showed that 2 groups of cyclists with different training status adopted similar pacing strategies during an XCO race simulation, as they both used a fast-starting pacing strategy followed by positive pacing that resulted in a linear decrease in power output at every lap.

Viana is with Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Pires is with Exercise Psychophysiology Research Group, University of São Paulo, São Paulo, Brazil. Inoue is with Physical Education Center Admiral Adalberto Nunes, Brazilian Navy, Rio de Janeiro, Brazil. Santos is with the Graduate Program of Physical Education, Federal University of Pernambuco, Recife, Brazil.

Santos (tony.meireles@ufpe.br) is corresponding author.
  • 1.

    Impellizzeri F, Sassi A, Rodriguez-Alonso M, Mognoni P, Marcora S. Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc. 2002;34(11):1808–1813. PubMed doi:10.1249/01.MSS.0000036690.39627.F7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Impellizzeri FM, Marcora SM. The physiology of mountain biking. Sports Med. 2007;37(1):59–71. PubMed doi:10.2165/00007256-200737010-00005

  • 3.

    Stapelfeldt B, Schwirtz A, Schumacher YO, Hillebrecht M. Workload demands in mountain bike racing. Int J Sports Med. 2004;25(4):294–300. PubMed doi:10.1055/s-2004-819937

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Macdermid PW, Morton RH. A longitudinal analysis of start position and the outcome of World Cup cross-country mountain bike racing. J Sports Sci. 2012;30(2):175–182. PubMed doi:10.1080/02640414.2011.627368

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wingo JE, Casa DJ, Berger EM, Dellis WO, Knight JC, McClung JM. Influence of a pre-exercise glycerol hydration beverage on performance and physiologic function during mountain-bike races in the heat. J Athl Train. 2004;39(2):169–175. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Viana BF, Inoue A, Santos TM. The influence of start position on even-pacing strategy in mountain bike racing. Int J Sports Physiol Perform. 2013;8(4):351–351. PubMed doi:10.1123/ijspp.8.4.351

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lima-Silva AE, Bertuzzi RC, Pires FO, et al. Effect of performance level on pacing strategy during a 10-km running race. Eur J Appl Physiol. 2010;108(5):1045–1053. PubMed doi:10.1007/s00421-009-1300-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tucker R, Noakes TD. The physiological regulation of pacing strategy during exercise: a critical review. Br J Sports Med. 2009;43(6):1. PubMed doi:10.1136/bjsm.2009.057562

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Corbett J, Barwood MJ, Ouzounoglou A, Thelwell R, Dicks M. Influence of competition on performance and pacing during cycling exercise. Med Sci Sports Exerc. 2012;44(3):509–515. PubMed doi:10.1249/MSS.0b013e31823378b1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    St Clair Gibson A, Lambert EV, Rauch LH, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705–722. PubMed doi:10.2165/00007256-200636080-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Albertus Y, Tucker R, St Clair Gibson A, Lambert EV, Hampson DB, Noakes TD. Effect of distance feedback on pacing strategy and perceived exertion during cycling. Med Sci Sports Exerc. 2005;37(3):461–468. PubMed doi:10.1249/01.MSS.0000155700.72702.76

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mauger AR, Jones AM, Williams CA. Influence of feedback and prior experience on pacing during a 4-km cycle time trial. Med Sci Sports Exerc. 2009;41(2):451–458. PubMed doi:10.1249/MSS.0b013e3181854957

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111–122. PubMed doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Harriss DJ, Atkinson G. Update—ethical standards in sport and exercise science research. Int J Sports Med. 2011;32(11):819–821. PubMed doi:10.1055/s-0031-1287829

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Inoue A, Impellizzeri FM, Pires FO, Pompeu FA, Deslandes AC, Santos TM. Effects of sprint versus high-intensity aerobic interval training on cross-country mountain biking performance: a randomized controlled trial. PLoS ONE. 2016;11(1):e0145298. PubMed doi:10.1371/journal.pone.0145298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rose S, Peters-Futre EM. Ad libitum adjustments to fluid intake during cool environmental conditions maintain hydration status during a 3-day mountain bike race. Br J Sports Med. 2010;44(6):430–436. PubMed doi:10.1136/bjsm.2008.049551

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Inoue A, Sa Filho AS, Mello FC, Santos TM. Relationship between anaerobic cycling tests and mountain bike cross-country performance. J Strength Cond Res. 2012;26(6):1589–1593. PubMed doi:10.1519/JSC.0b013e318234eb89

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Peveler WW. The accuracy of simulated indoor time trials utilizing a CompuTrainer and GPS data. J Strength Cond Res. 2013;27(10):2823–2827. PubMed doi:10.1519/JSC.0b013e318280ce76

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sparks SA, Williams E, Jones H, Bridge C, Marchant D, McNaughton L. Test–retest reliability of a 16.1 km time trial in trained cyclists using the CompuTrainer ergometer. J Sci Cycling. 2016;5(3):35–41.

    • Search Google Scholar
    • Export Citation
  • 20.

    Paulucio D, Nogueira F, Velasques B, Ribeiro P, Pompeu F. Day-to-day variation of cardiopulmonary variables obtained during an incremental cycling test to volitional exhaustion. J Exerc Physiol Online. 2015;18(3):81–90.

    • Search Google Scholar
    • Export Citation
  • 21.

    Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197–201. PubMed doi:10.1055/s-2008-1025839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg E, Borg G. A comparison of AME and CR100 for scaling perceived exertion. Acta Psychol (Amst). 2002;109(2):157–175. PubMed doi:10.1016/S0001-6918(01)00055-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Borg E, Kaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports. 2006;16(1):57–69. PubMed doi:10.1111/j.1600-0838.2005.00448.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Medbo JI, Mamen A, Holt Olsen O, Evertsen F. Examination of four different instruments for measuring blood lactate concentration. Scand J Clin Lab Invest. 2000;60(5):367–380. PubMed doi:10.1080/003655100750019279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hagberg JM, Coyle EF. Physiological determinants of endurance performance as studied in competitive racewalkers. Med Sci Sports Exerc. 1983;15(4):287–289. PubMed doi:10.1249/00005768-198315040-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Sjodin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med. 1981;2(1):23–26. PubMed doi:10.1055/s-2008-1034579

  • 27.

    Sandals LE, Wood DM, Draper SB, James DV. Influence of pacing strategy on oxygen uptake during treadmill middle-distance running. Int J Sports Med. 2006;27(1):37–42. PubMed doi:10.1055/s-2005-837468

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Thompson KG, MacLaren DP, Lees A, Atkinson G. The effect of even, positive and negative pacing on metabolic, kinematic and temporal variables during breaststroke swimming. Eur J Appl Physiol. 2003;88(4–5):438–443. doi:10.1007/s00421-002-0715-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Thompson KG, MacLaren DP, Lees A, Atkinson G. The effects of changing pace on metabolism and stroke characteristics during high-speed breaststroke swimming. J Sports Sci. 2004;22(2):149–157. PubMed doi:10.1080/02640410310001641467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Foster C, Snyder AC, Thompson NN, Green MA, Foley M, Schrager M. Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc. 1993;25(3):383–388. PubMed doi:10.1249/00005768-199303000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Martin L, Lambeth-Mansell A, Beretta-Azevedo L, Holmes LA, Wright R, St Clair Gibson A. Even between-lap pacing despite high within-lap variation during mountain biking. Int J Sports Physiol Perform. 2012;7(3):261–270. PubMed doi:10.1123/ijspp.7.3.261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Angus SD, Waterhouse BJ. Pacing strategy from high-frequency field data: more evidence for neural regulation? Med Sci Sports Exerc. 2011;43(12):2405–2411. PubMed doi:10.1249/MSS.0b013e3182245367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Tucker R, Bester A, Lambert EV, Noakes TD, Vaughan CL, St Clair Gibson A. Non-random fluctuations in power output during self-paced exercise. Br J Sports Med. 2006;40(11):912–917. PubMed doi:10.1136/bjsm.2006.026435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 185 185 37
Full Text Views 17 17 0
PDF Downloads 5 5 0