Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Cross-country mountain biking (XCO) is a popular high-intensity endurance cycling event, but XCO pacing strategy has not been fully examined. This study examined the pacing strategies of different XCO athletes during a laboratory-simulated XCO performance test. Brazilian cyclists classified as performance-cohort level 3 performed an XCO race simulation. The simulation consisted of four 10-km laps with a gradient of 0–10%. No group-vs-time interaction was found in lap time (P = .169), absolute (P = .719) and relative (P = .607) power output, ratings of perceived exertion (P = .182), or heart rate (P = .125). There was a time main effect, as athletes decreased power output by 0.3 W/kg throughout the XCO simulation, thereby resulting in a 1.6-min decrement per lap. The power output corresponding to the onset of blood lactate accumulation adequately represented the mean power of the first lap. These results showed that 2 groups of cyclists with different training status adopted similar pacing strategies during an XCO race simulation, as they both used a fast-starting pacing strategy followed by positive pacing that resulted in a linear decrease in power output at every lap.

Viana is with Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Pires is with Exercise Psychophysiology Research Group, University of São Paulo, São Paulo, Brazil. Inoue is with Physical Education Center Admiral Adalberto Nunes, Brazilian Navy, Rio de Janeiro, Brazil. Santos is with the Graduate Program of Physical Education, Federal University of Pernambuco, Recife, Brazil.

Santos (tony.meireles@ufpe.br) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Impellizzeri FSassi ARodriguez-Alonso MMognoni PMarcora S. Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc. 2002;34(11):18081813. PubMed doi:10.1249/01.MSS.0000036690.39627.F7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Impellizzeri FMMarcora SM. The physiology of mountain biking. Sports Med. 2007;37(1):5971. PubMed doi:10.2165/00007256-200737010-00005

  • 3.

    Stapelfeldt BSchwirtz ASchumacher YOHillebrecht M. Workload demands in mountain bike racing. Int J Sports Med. 2004;25(4):294300. PubMed doi:10.1055/s-2004-819937

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Macdermid PWMorton RH. A longitudinal analysis of start position and the outcome of World Cup cross-country mountain bike racing. J Sports Sci. 2012;30(2):175182. PubMed doi:10.1080/02640414.2011.627368

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wingo JECasa DJBerger EMDellis WOKnight JCMcClung JM. Influence of a pre-exercise glycerol hydration beverage on performance and physiologic function during mountain-bike races in the heat. J Athl Train. 2004;39(2):169175. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Viana BFInoue ASantos TM. The influence of start position on even-pacing strategy in mountain bike racing. Int J Sports Physiol Perform. 2013;8(4):351351. PubMed doi:10.1123/ijspp.8.4.351

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lima-Silva AEBertuzzi RCPires FOet al. Effect of performance level on pacing strategy during a 10-km running race. Eur J Appl Physiol. 2010;108(5):10451053. PubMed doi:10.1007/s00421-009-1300-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tucker RNoakes TD. The physiological regulation of pacing strategy during exercise: a critical review. Br J Sports Med. 2009;43(6):1. PubMed doi:10.1136/bjsm.2009.057562

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Corbett JBarwood MJOuzounoglou AThelwell RDicks M. Influence of competition on performance and pacing during cycling exercise. Med Sci Sports Exerc. 2012;44(3):509515. PubMed doi:10.1249/MSS.0b013e31823378b1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    St Clair Gibson ALambert EVRauch LHet al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36(8):705722. PubMed doi:10.2165/00007256-200636080-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Albertus YTucker RSt Clair Gibson ALambert EVHampson DBNoakes TD. Effect of distance feedback on pacing strategy and perceived exertion during cycling. Med Sci Sports Exerc. 2005;37(3):461468. PubMed doi:10.1249/01.MSS.0000155700.72702.76

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mauger ARJones AMWilliams CA. Influence of feedback and prior experience on pacing during a 4-km cycle time trial. Med Sci Sports Exerc. 2009;41(2):451458. PubMed doi:10.1249/MSS.0b013e3181854957

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Pauw KRoelands BCheung SSde Geus BRietjens GMeeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Harriss DJAtkinson G. Update—ethical standards in sport and exercise science research. Int J Sports Med. 2011;32(11):819821. PubMed doi:10.1055/s-0031-1287829

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Inoue AImpellizzeri FMPires FOPompeu FADeslandes ACSantos TM. Effects of sprint versus high-intensity aerobic interval training on cross-country mountain biking performance: a randomized controlled trial. PLoS ONE. 2016;11(1):e0145298. PubMed doi:10.1371/journal.pone.0145298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rose SPeters-Futre EM. Ad libitum adjustments to fluid intake during cool environmental conditions maintain hydration status during a 3-day mountain bike race. Br J Sports Med. 2010;44(6):430436. PubMed doi:10.1136/bjsm.2008.049551

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Inoue ASa Filho ASMello FCSantos TM. Relationship between anaerobic cycling tests and mountain bike cross-country performance. J Strength Cond Res. 2012;26(6):15891593. PubMed doi:10.1519/JSC.0b013e318234eb89

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Peveler WW. The accuracy of simulated indoor time trials utilizing a CompuTrainer and GPS data. J Strength Cond Res. 2013;27(10):28232827. PubMed doi:10.1519/JSC.0b013e318280ce76

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sparks SAWilliams EJones HBridge CMarchant DMcNaughton L. Test–retest reliability of a 16.1 km time trial in trained cyclists using the CompuTrainer ergometer. J Sci Cycling. 2016;5(3):3541.

    • Search Google Scholar
    • Export Citation
  • 20.

    Paulucio DNogueira FVelasques BRibeiro PPompeu F. Day-to-day variation of cardiopulmonary variables obtained during an incremental cycling test to volitional exhaustion. J Exerc Physiol Online. 2015;18(3):8190.

    • Search Google Scholar
    • Export Citation
  • 21.

    Kuipers HVerstappen FTKeizer HAGeurten Pvan Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197201. PubMed doi:10.1055/s-2008-1025839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg EBorg G. A comparison of AME and CR100 for scaling perceived exertion. Acta Psychol (Amst). 2002;109(2):157175. PubMed doi:10.1016/S0001-6918(01)00055-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Borg EKaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports. 2006;16(1):5769. PubMed doi:10.1111/j.1600-0838.2005.00448.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Medbo JIMamen AHolt Olsen OEvertsen F. Examination of four different instruments for measuring blood lactate concentration. Scand J Clin Lab Invest. 2000;60(5):367380. PubMed doi:10.1080/003655100750019279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hagberg JMCoyle EF. Physiological determinants of endurance performance as studied in competitive racewalkers. Med Sci Sports Exerc. 1983;15(4):287289. PubMed doi:10.1249/00005768-198315040-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Sjodin BJacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med. 1981;2(1):2326. PubMed doi:10.1055/s-2008-1034579

  • 27.

    Sandals LEWood DMDraper SBJames DV. Influence of pacing strategy on oxygen uptake during treadmill middle-distance running. Int J Sports Med. 2006;27(1):3742. PubMed doi:10.1055/s-2005-837468

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Thompson KGMacLaren DPLees AAtkinson G. The effect of even, positive and negative pacing on metabolic, kinematic and temporal variables during breaststroke swimming. Eur J Appl Physiol. 2003;88(4–5):438443. doi:10.1007/s00421-002-0715-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Thompson KGMacLaren DPLees AAtkinson G. The effects of changing pace on metabolism and stroke characteristics during high-speed breaststroke swimming. J Sports Sci. 2004;22(2):149157. PubMed doi:10.1080/02640410310001641467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Foster CSnyder ACThompson NNGreen MAFoley MSchrager M. Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc. 1993;25(3):383388. PubMed doi:10.1249/00005768-199303000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Martin LLambeth-Mansell ABeretta-Azevedo LHolmes LAWright RSt Clair Gibson A. Even between-lap pacing despite high within-lap variation during mountain biking. Int J Sports Physiol Perform. 2012;7(3):261270. PubMed doi:10.1123/ijspp.7.3.261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Angus SDWaterhouse BJ. Pacing strategy from high-frequency field data: more evidence for neural regulation? Med Sci Sports Exerc. 2011;43(12):24052411. PubMed doi:10.1249/MSS.0b013e3182245367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Tucker RBester ALambert EVNoakes TDVaughan CLSt Clair Gibson A. Non-random fluctuations in power output during self-paced exercise. Br J Sports Med. 2006;40(11):912917. PubMed doi:10.1136/bjsm.2006.026435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 81 81 25
Full Text Views 15 15 2
PDF Downloads 4 4 3
Altmetric Badge
PubMed
Google Scholar
Cited By