Associations Between Individual Lower-Limb Muscle Volumes and 100-m Sprint Time in Male Sprinters

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To elucidate the relationship between the muscularity of individual lower-limb muscles and 100-m-race time (t100) in young-adult male sprinters. Methods: Thirty-one young-adult male sprinters took part in this study (age 19.9 ± 1.4 y, height 173.5 ± 4.6 cm, body mass 67.0 ± 4.9 kg, t100 10.23–11.71 s). Cross-sectional images from the origin to insertion of 12 lower-limb muscles were obtained with via magnetic resonance imaging (MRI). The absolute volume of each muscle, the ratio of total volume of measured muscles to body mass, the ratio of individual muscle volume to body mass, and the ratio between 2 individual muscle volumes were calculated as indices of muscularity using the images. A stepwise multiple-regression analysis was performed to examine the association between the indices and t100. Results: A stepwise multiple-regression analysis produced an equation (adjusted R2 = .234) with the gluteus maximus–to–quadriceps femoris muscle-volume ratio (β = −0.509, P = .003) as the explanatory variable. Conclusions: Individual differences in 100-m-race performance cannot be explained by the muscularity of specific muscles, and 23% of the variability in the performance can be explained by the relative difference between the muscularity of gluteus maximus and quadriceps femoris; faster runners have a greater gluteus maximus relative to quadriceps femoris.

Sugisaki is with the Center for Liberal Arts, Meiji Gakuin University, Yokohama, Japan. Kobayashi is with the Japan Sport Council, Tokyo, Japan. Tsuchie is with the Dept of Business Law, Toyo University, Tokyo, Japan. Kanehisa is with the Dept of Sports and Life Science, National Inst of Fitness and Sports in Kanoya, Kanoya, Japan.

Sugisaki (nsugi@gen.meijigakuin.ac.jp) is corresponding author.
  • 1.

    Copaver K, Hertogh C, Hue O. The effects of psoas major and lumbar lordosis on hip flexion and sprint performance. Res Q Exerc Sport. 2012;83(2):160–167. PubMed doi:10.1080/02701367.2012.10599846

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hoshikawa Y, Muramatsu M, Iida T, et al. Influence of the psoas major and thigh muscularity on 100-m times in junior sprinters. Med Sci Sports Exerc. 2006;38(12):2138–2143. PubMed doi:10.1249/01.mss.0000233804.48691.45

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kubo T, Hoshikawa Y, Muramatsu M, et al. Contribution of trunk muscularity on sprint run. Int J Sports Med. 2011;32(3):223–228. PubMed doi:10.1055/s-0030-1268502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000;88(3):811–816. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kubo K, Ikebukuro T, Yata H, Tomita M, Okada M. Morphological and mechanical properties of muscle and tendon in highly trained sprinters. J Appl Biomech. 2011;27(4):336–344. PubMed doi:10.1123/jab.27.4.336

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ema R, Wakahara T, Miyamoto N, Kanehisa H, Kawakami Y. Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training. Eur J Appl Physiol. 2013;113(11):2691–2703. PubMed doi:10.1007/s00421-013-2700-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Akima H, Kubo K, Imai M, et al. Inactivity and muscle: effect of resistance training during bed rest on muscle size in the lower limb. Acta Physiol Scand. 2001;172(4):269–278. PubMed doi:10.1046/j.1365-201x.2001.00869.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand. 2001;172(4):249–255. PubMed doi:10.1046/j.1365-201x.2001.00867.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Yamaguchi GT, Sawa AGU, Moran DW, Fessler MJ, Winters JM. A survey of human musculotendon actuator parameters. In: Winters JM, Woo SLY, eds. Multiple Muscle Systems: Biomechanics and Movement Organization. New York, NY: Springer; 1990:717–773.

    • Search Google Scholar
    • Export Citation
  • 10.

    Lieberman DE, Raichlen DA, Pontzer H, Bramble DM, Cutright-Smith E. The human gluteus maximus and its role in running. J Exp Biol. 2006;209(Pt 11):2143–2155. PubMed doi:10.1242/jeb.02255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kyrolainen H, Avela J, Komi PV. Changes in muscle activity with increasing running speed. J Sports Sci. 2005;23(10):1101–1109. PubMed doi:10.1080/02640410400021575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Simonsen EB, Thomsen L, Klausen K. Activity of mono- and biarticular leg muscles during sprint running. Eur J Appl Physiol Occup Physiol. 1985;54(5):524–532. PubMed doi:10.1007/BF00422964

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bezodis IN, Kerwin DG, Salo AI. Lower-limb mechanics during the support phase of maximum-velocity sprint running. Med Sci Sports Exerc. 2008;40(4):707–715. PubMed doi:10.1249/MSS.0b013e318162d162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hunter JP, Marshall RN, McNair PJ. Segment-interaction analysis of the stance limb in sprint running. J Biomech. 2004;37(9):1439–1446. PubMed doi:10.1016/j.jbiomech.2003.12.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Morin JB, Gimenez P, Edouard P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed doi:10.3389/fphys.2015.00404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Mero A, Luhtanen P, Viitasalo JT, Komi PV. Relationships between the maximal running velocity, muscle fiber characteristics, force production and force relaxation of sprinters. Scand J Sports Sci. 1981;3:16–22.

    • Search Google Scholar
    • Export Citation
  • 17.

    Belli A, Kyrolainen H, Komi PV. Moment and power of lower limb joints in running. Int J Sports Med. 2002;23(2):136–141. PubMed doi:10.1055/s-2002-20136

  • 18.

    Korhonen MT, Mero AA, Alen M, et al. Biomechanical and skeletal muscle determinants of maximum running speed with aging. Med Sci Sports Exerc. 2009;41(4):844–856. PubMed doi:10.1249/MSS.0b013e3181998366

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Nakatani M, Takai Y, Akagi R, et al. Validity of muscle thickness-based prediction equation for quadriceps femoris volume in middle-aged and older men and women. Eur J Appl Physiol. 2016;116(11–12):2125–2133. doi:10.1007/s00421-016-3464-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Miyatani M, Kanehisa H, Kuno S, Nishijima T, Fukunaga T. Validity of ultrasonograph muscle thickness measurements for estimating muscle volume of knee extensors in humans. Eur J Appl Physiol. 2002;86(3):203–208. PubMed doi:10.1007/s00421-001-0533-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cronin NJ, Finni T. Treadmill versus overground and barefoot versus shod comparisons of triceps surae fascicle behaviour in human walking and running. Gait Posture. 2013;38(3):528–533. PubMed doi:10.1016/j.gaitpost.2013.01.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ishikawa M, Pakaslahti J, Komi PV. Medial gastrocnemius muscle behavior during human running and walking. Gait Posture. 2007;25(3):380–384. PubMed doi:10.1016/j.gaitpost.2006.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mann RA, Moran GT, Dougherty SE. Comparative electromyography of the lower extremity in jogging, running, and sprinting. Am J Sports Med. 1986;14(6):501–510. PubMed doi:10.1177/036354658601400614

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kunz H, Kaufmann DA. Biomechanical analysis of sprinting: decathletes versus champions. Br J Sports Med. 1981;15(3):177–181. PubMed doi:10.1136/bjsm.15.3.177

  • 25.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):3921–3930. PubMed doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89(5):1991–1999. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Delecluse C, Van Coppenolle H, Willems E, Van Leemputte M, Diels R, Goris M. Influence of high-resistance and high-velocity training on sprint performance. Med Sci Sports Exerc. 1995;27(8):1203–1209. PubMed doi:10.1249/00005768-199508000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running: a review. Sports Med. 1992;13(6):376–392. PubMed doi:10.2165/00007256-199213060-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Spencer M, Bishop D, Dawson B, Goodman C. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35(12):1025–1044. PubMed doi:10.2165/00007256-200535120-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 119 119 26
Full Text Views 7 7 4
PDF Downloads 7 7 5