Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: The Reactive Strength Index Modified (RSImod) has been recently identified and validated as a method of monitoring countermovement-jump (CMJ) performance. The kinetic and kinematic mechanisms that optimize a higher RSImod score are, however, currently unknown. The purpose of this study, therefore, was to compare entire CMJ force–, power–, velocity–, and displacement–time curves (termed temporal-phase analysis) of athletes who achieve high versus low RSImod scores. Methods: Fifty-three professional male rugby league players performed 3 maximal-effort CMJs on a force platform, and variables of interest were calculated via forward dynamics. The top (high RSImod group) and bottom (low RSImod group) of 20 athletes’ CMJ kinetic- and kinematic-time curves were compared. Results: The high-RSImod group (0.53 ± 0.05 vs 0.36 ± 0.03) jumped higher (37.7 ± 3.9 vs 31.8 ± 3.2 cm) with a shorter time to takeoff (TTT) (0.707 ± 0.043 vs 0.881 ± 0.122 s). This was achieved by a more rapid unweighting phase followed by greater eccentric and concentric force, velocity, and power for large portions (including peak values) of the jump, but a similar countermovement displacement. The attainment of a high RSImod score therefore required a taller, but thinner, active impulse. Conclusions: Athletes who perform the CMJ with a high RSImod, as achieved by high jumps with a short TTT, demonstrate superior force, power, velocity, and impulse during both the eccentric and concentric phases of the jump. Practitioners who include the RSImod calculation in their testing batteries may assume that greater RSImod values are attributed to an increase in these underpinning kinetic and kinematic parameters.

McMahon, Jones, and Comfort are with the Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, United Kingdom. Suchomel is with the Dept of Human Movement Sciences, Carroll University, Waukesha, WI. Lake is with the Chichester Inst of Sport, University of Chichester, Chichester, United Kingdom.

McMahon (j.j.mcmahon@salford.ac.uk) is corresponding author.
  • 1.

    Young W. Laboratory strength assessments of athletes. New Stud Athl. 1995;10(1):86–89.

  • 2.

    Flanagan EP, Comyns TM. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond J. 2008;30(5):32–38. doi:10.1519/SSC.0b013e318187e25b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ebben WP, Petushek EJ. Using the Reactive Strength Index Modified to evaluate plyometric performance. J Strength Cond Res. 2010;24(8):1983–1987. PubMed doi:10.1519/JSC.0b013e3181e72466

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Suchomel TJ, Bailey CA, Sole CJ, Grazer JL, Beckham GK. Using Reactive Strength Index-Modified as an explosive performance measurement tool in Division I athletes. J Strength Cond Res. 2015;29(4):899–904. PubMed doi:10.1519/JSC.0000000000000743

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Suchomel TJ, Sole CJ, Bailey CA, Grazer JL, Beckham GK. A comparison of Reactive Strength Index-Modified between six U.S. collegiate athletic teams. J Strength Cond Res. 2015;29(5):1310–1316. doi:10.1519/JSC.0000000000000761

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Suchomel TJ, Sole CJ, Stone MH. Comparison of methods that assess lower-body stretch-shortening cycle utilization. J Strength Cond Res. 2016;30(2):547–554. PubMed doi:10.1519/JSC.0000000000001100

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kipp K, Kiely MT, Geiser CF. Reactive Strength Index Modifiedis a valid measure of explosiveness in collegiate female volleyball players. J Strength Cond Res. 2016;30(5):1341–1347. PubMed doi:10.1519/JSC.0000000000001226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McMahon JJ, Rej SJ, Comfort P. Sex differences in countermovement jump phase characteristics. Sports. 2017;5(1):8. doi:10.3390/sports5010008

  • 9.

    McMahon JJ, Murphy S, Rej SJ, Comfort P. Countermovement-jump-phase characteristics of senior and academy rugby league players. Int J Sports Physiol Perform. 2017;12(6):803–811. PubMed doi:10.1123/ijspp.2016-0467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cormie P, McBride JM, McCaulley GO. Power-time, force-time, and velocity-time curve analysis during the jump squat: impact of load. J Appl Biomech. 2008;24(2):112–120. PubMed doi:10.1123/jab.24.2.112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gathercole R, Sporer B, Stellingwerff T, Sleivert G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int J Sports Physiol Perform. 2015;10(1):84–92. PubMed doi:10.1123/ijspp.2013-0413

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Rice PE, Goodman CL, Capps CR, Triplett NT, Erickson TM, McBride JM. Force- and power-time curve comparison during jumping between strength-matched male and female basketball players. Eur J Sport Sci. 2017;17(3):286–293. PubMed doi:10.1080/17461391.2016.1236840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kijowksi KN, Capps CR, Goodman CL, et al. Short-term resistance and plyometric training improves eccentric phase kinetics in jumping. J Strength Cond Res. 2015;29(8):2186–2196. PubMed doi:10.1519/JSC.0000000000000904

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42(8):1582–1598. PubMed doi:10.1249/MSS.0b013e3181d2013a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cormie P, McBride JM, McCaulley GO. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. J Strength Cond Res. 2009;23(1):177–186. PubMed doi:10.1519/JSC.0b013e3181889324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cormie P, McGuigan MR, Newton RU. Influence of strength on magnitude and mechanisms of adaptation to power training. Med Sci Sports Exerc. 2010;42(8):1566–1581. PubMed doi:10.1249/MSS.0b013e3181cf818d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kirby TJ, McBride JM, Haines TL, Dayne AM. Relative net vertical impulse determines jumping performance. J Appl Biomech. 2011;27(3):207–214. PubMed doi:10.1123/jab.27.3.207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    McMahon JJ, Ripley NJ, Rej SJ. Effect of modulating eccentric leg stiffness on concentric force-velocity characteristics demonstrated in the countermovement jump. J Sports Sci. 2016;34(S1):19.

    • Search Google Scholar
    • Export Citation
  • 19.

    Owen NJ, Watkins J, Kilduff LP, Bevan HR, Bennett MA. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J Strength Cond Res. 2014;28(6):1552–1558. PubMed doi:10.1519/JSC.0000000000000311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Moir GL. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Educ Exerc Sci. 2008;12(4):207–218. doi:10.1080/10913670802349766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cortina JM. What is coefficient alpha?: an examination of theory and applications. J Appl Psych. 1993;78(1):98–104. doi:10.1037/0021-9010.78.1.98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WG. A scale of magnitudes for effect statistics. 2017. http://www.sportsci.org/resource/stats/effectmag.html. Accessed January 25, 2017.

    • Export Citation
  • 23.

    Cormack S, Newton RU, McGuigan M, Doyle T. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform. 2008;3(2):131–144. PubMed doi:10.1123/ijspp.3.2.131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18(4):918–920. PubMed doi:10.1519/14403.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Suchomel TJ, Sole CJ. Force–time curve comparison between weightlifting derivatives. Int J Sports Physiol Perform. 2017;12(4):431–439. PubMed doi:10.1123/ijspp.2016-0147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Beattie K, Carson BP, Lyons M, Kenny IC. The relationship between maximal strength and reactive strength. Int J Sports Physiol Perform. 2017;12(4):548–553. PubMed doi:10.1123/ijspp.2016-0216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mundy PD, Smith NA, Lauder MA, Lake JP. The effects of barbell load on countermovement vertical jump power and net impulse. J Sports Sci. 2017;35(18):1–7. PubMed doi:10.1080/02640414.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lake JP, Mundy PD, Comfort P. Power and impulse applied during push press exercise. J Strength Cond Res. 2014;28(9):2552–2559. PubMed doi:10.1519/JSC.0000000000000438

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Beckham GK, Suchomel TJ, Bailey CA, Sole CJ, Grazer JL. The relationship of the Reactive Strength Index-Modified and measures of force development in the isometric mid-thigh pull. Paper presented at: 32nd International Conference of Biomechanics in Sports; July 12–16, 2014; Johnson City, TN.

    • Export Citation
  • 30.

    Dowling JJ, Vamos L. Identification of kinetic and temporal factors related to vertical jump performance. J Appl Biomech. 1993;9(2):95–110. doi:10.1123/jab.9.2.95

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 254 254 38
Full Text Views 14 14 2
PDF Downloads 8 8 1