Precooling With Crushed Ice: As Effective as Heat Acclimation at Improving Cycling Time-Trial Performance in the Heat

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

This study compared the effects of precooling (ice ingestion) and heat-acclimation training on cycling time-trial (CTT) performance in the heat. Fifteen male cyclists/triathletes completed two 800-kJ CTTs in the heat, with a 12-d training program in between. Initially, all participants consumed 7 g/kg of water (22°C) in 30 min before completing an 800-kJ CTT in hot, humid conditions (pre-CTT) (35°C, 50% relative humidity [RH]). Participants were then split into 2 groups, with the precooling group (n = 7) training in thermoneutral conditions and then undergoing precooling with ice ingestion (7 g/kg, 1°C) prior to the final CTT (post-CTT) and the heat-acclimation group (n = 8) training in hot conditions (35°C, 50% RH) and consuming water (7 g/kg) prior to post-CTT. After training in both conditions, improvement in CTT time was deemed a likely positive benefit (precooling −166 ± 133 s, heat acclimation −105 ± 62 s), with this result being similar between conditions (d = 0.22, −0.68–1.08 90% confidence interval [CI]). Core temperature for post-CTT was lower in precooling than in heat acclimation from 20 min into the precooling period until the 100-kJ mark of the CTT (d > 0.98). Sweat onset occurred later in precooling (250 ± 100 s) than in heat acclimation (180 ± 80 s) for post-CTT (d = 0.65, −0.30–1.50 90% CI). Thermal sensation was lower at the end of the precooling period prior to post-CTT for the precooling trial than with heat acclimation (d = 1.24, 0.90–1.58 90% CI). Precooling with ice ingestion offers an alternative method of improving endurance-cycling performance in hot conditions if heat acclimation cannot be attained.

The authors are with the School of Sport Science, Exercise & Health, The University of Western Australia, Perth, Australia.

Zimmermann (matthew.zimmermann@research.uwa.edu.au) is corresponding author.
  • 1.

    González-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999;86(3):1032–1039. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cheung SS, McLellan TM, Tenaglia S. The thermophysiology of uncompensable heat stress. Sports Med. 2000;29(5):329–359. PubMed doi:10.2165/00007256-200029050-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–390. PubMed doi:10.1249/mss.0b013e31802ca597

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Nybo L, Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol. 2001;91(3):1055–1060. PubMed

  • 5.

    Périard JD, Caillaud C, Thompson MW. Central and peripheral fatigue during passive and exercise-induced hyperthermia. Med Sci Sports Exerc. 2011;43(9):1657–1665. PubMed doi:10.1249/MSS.0b013e3182148a9a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Febbrario MA, Snow RJ, Stathis CG, Hargreaves M, Carey MF. Blunting the rise in core temperature reduces muscle glycogenolysis during exercise in humans. Exp Physiol. 1996;81(4):685–693. PubMed doi:10.1113/expphysiol.1996.sp003969

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Schlader ZJ, Stannard SR, Mündel T. Is peak oxygen uptake a determinant of moderate-duration self-paced exercise performance in the heat? Appl Physiol Nutr Metab. 2011;36(6):863–872. PubMed doi:10.1139/h11-111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Garrett AT, Goosens NG, Rehrer NG, Patterson MJ, Cotter JD. Induction and decay of short-term heat acclimation. Eur J Appl Physiol. 2009;107(6):659–670. PubMed doi:10.1007/s00421-009-1182-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mee JA, Gibson OR, Doust J, Maxwell NS. A comparison of males and females’ temporal patterning to short-and long-term heat acclimation. Scand J Med Sci Sports. 2015;25(S1):250–258. PubMed doi:10.1111/sms.12417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109(4):1140–1147. PubMed doi:10.1152/japplphysiol.00495.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kay D, Marino FE. Fluid ingestion and exercise hyperthermia: implications for performance, thermoregulation, metabolism and the development of fatigue. J Sports Sci. 2000;18(2):71–82. PubMed doi:10.1080/026404100365135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ihsan M, Landers G, Brearley M, Peeling P. Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. Int J Sports Physiol Perform. 2010;5:140–151. PubMed doi:10.1123/ijspp.5.2.140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ross ML, Garvican LA, Jeacocke NA, et al. Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc. 2011;43(1):123–133. PubMed doi:10.1249/MSS.0b013e3181e93210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Siegel R, Mate J, Brearley MB, Watson G, Nosaka K, Laursen PB. Ice slurry ingestion increases core temperature capacity and running time in the heat. Med Sci Sports Exerc. 2010;42(4):717–725. PubMed doi:10.1249/MSS.0b013e3181bf257a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Burdon CA, Hoon MW, Johnson NA, Chapman PG, O’Connor HT. The effect of ice slushy ingestion and mouthwash on thermoregulation and endurance performance in the heat. Int J Sport Nutr Exerc Metab. 2013;23(5):458–469. PubMed doi:10.1123/ijsnem.23.5.458

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Brade C, Dawson B, Wallman K. Effect of precooling and acclimation on repeat-sprint performance in heat. J Sports Sci. 2013;31(7):779–786. PubMed doi:10.1080/02640414.2012.750006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Castle P, Mackenzie RW, Maxwell N, Webborn AD, Watt PW. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect. J Sports Sci. 2011;29(11):1125–1134. PubMed doi:10.1080/02640414.2011.583673

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Schmit C, Le Meur Y, Duffield R, et al. Heat-acclimatization and pre-cooling: a further boost for endurance performance?. Scand J Med Sci Sports. 2015;27:55–65. PubMed doi:10.1111/sms.12629

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Byrne C, Lim CL. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications. Br J Sports Med. 2007;41(3):126–133. PubMed doi:10.1136/bjsm.2006.026344

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Burton AC. Human calorimetry II: the average temperature of the tissues of the body. J Nutr. 1935;9(3):261–280. PubMed doi:10.1210/jc.2012-2981

  • 21.

    Sugenoya J, Iwase S, Mano T, Ogawa T. Identification of sudomotor activity in cutaneous sympathetic nerves using sweat expulsion as the effector response. Eur J Appl Physiol. 1990;61(3):302–308. PubMed doi:10.1007/BF00357617

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Pinnington HC, Wong P, Tay J, Green D, Dawson B. The level of accuracy and agreement in measures of FeO2, FeCO2 and VE between the Cosmed K4b2 portable, respiratory gas analysis system and a metabolic cart. J Sci Med Sport. 2001;4(3):324–335. PubMed doi:10.1016/S1440-2440(01)80041-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Borg G. Psychophysical base of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. PubMed doi:10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Roberts B. Environmental testing. J Inst Heat Ventil Engine. 1959;27:238–250.

  • 25.

    Maresh CM, Herrera-Soto JA, Armstrong LE, et al. Perceptual responses in the heat after brief intravenous versus oral rehydration. Med Sci Sports Exerc. 2001;33(6):1039–1045. PubMed doi:10.1097/00005768-200106000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Earlbaum; 1988.

  • 27.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):50–57. PubMed doi:10.1123/ijspp.1.1.50

  • 28.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15. PubMed doi:10.2165/00007256-200030010-00001

  • 29.

    Cotter JD, Patterson MJ, Taylor NA. Sweat distribution before and after repeated heat exposure. Eur J Appl Physiol Occup Physiol. 1997;76(2):181–186. PubMed doi:10.1007/s004210050232

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Zimmermann M, Landers G, Wallman KE, Saldaris J. The effects of crushed ice ingestion prior to steady state exercise in the heat. Int J Sport Nutr Exerc Metab. 2017;27(3):220–227. PubMed doi:10.1123/ijsnem.2016-0215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Siegel R, Maté J, Watson G, Nosaka K, Laursen PB. The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia. Eur J Appl Physiol. 2011;111(10):2517–2524. PubMed doi:10.1007/s00421-011-1876-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Stevens CJ, Dascombe B, Boyko A, Sculley D, Callister R. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. J Sports Sci. 2013;31(12):1271–1279. PubMed doi:10.1080/02640414.2013.779740

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Schulze E, Daanen HA, Levels K, et al. Effect of thermal state and thermal comfort on cycling performance in the heat. Int J Sports Physiol Perform. 2015;10(5):655–663. PubMed doi:10.1123/ijspp.2014-0281

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Eccles R. Role of cold receptors and menthol in thirst, the drive to breathe and arousal. Appetite. 2000;34(1):29–35. PubMed doi:10.1006/appe.1999.0291

  • 35.

    Lafrenz AJ, Wingo JE, Ganio MS, Cureton KJ. Effect of ambient temperature on cardiovascular drift and maximal oxygen uptake. Med Sci Sports Exerc. 2008;40(6):1065–1071. PubMed doi:10.1249/MSS.0b013e3181666ed7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 117 117 18
Full Text Views 7 7 2
PDF Downloads 6 6 2