Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Rugby sevens, a sport new to the Olympics, features high-intensity intermittent running and contact efforts over short match durations, normally 6 times across 2 to 3 d in a tournament format. Elite rugby sevens seasons often include over a dozen competitive tournaments over less than 9 months, demanding deliberate and careful training-stress balance and workload management alongside development of the necessary physical qualities required for competition. Focus on running and repeated power skills, strength, and match-specific conditioning capacities is advised. Partial taper approaches in combination with high-speed running (>5 m/s from GPS measures) before and between tournaments in succession may reduce injury rates and enhance performance. In a sport with substantial long-haul intercontinental travel and repetitive chronic load demands, management of logistics including nutrition and recovery is inclusive of the formula for success in the physical preparation of elite rugby sevens athletes.

Schuster is with the Athletics Dept, Florida State University, Tallahassee, FL. Howells is with Rugby Football Union, Twickenham, United Kingdom. Robineau and Couderc are with the French Rugby Union Federation, Marcoussis, France. Natera is with the Greater Western Sydney Giants, Australia. Lumley is with the Scottish Rugby Union, Edinburgh, Scotland. Gabbett is with Gabbett Performance Solutions, Brisbane, and the Inst for Resilient Regions, University of Southern Queensland, Darling Heights, Australia. Winkelman is with the Irish Rugby Football Union, Dublin, Ireland.

Schuster (JSchuster@FSU.edu) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Curry AHeptonstall VWarwick C. The future of rugby: an HSBC report. HSBC World Rugby Sevens Series 2015/16. 2016.

  • 2.

    Ross AGill NCronin J. The match demands of international rugby sevens. J Sports Sci. 2015;33:10351041. PubMed doi:

  • 3.

    Ross AGill NCronin J. Match analysis and player characteristics in rugby sevens. Sport Med. 2014;44(3):357367. doi:

  • 4.

    Mitchell JPumpa KWilliams KPyne D. Variable changes in body composition, strength and lower-body power during an international rugby sevens season. J Strength Cond Res. 2016;30(4):11271136. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mitchell JPumpa KPyne D. Responses of lower body power and match running demands following long haul travel in international rugby sevens players. J Strength Cond Res. 2017;31:686695. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Furusawa KHill AParkinson J. Dynamics of “sprint” running. Proc R Soc Britain. 1927;102(10):2942. doi:

  • 7.

    Higham DGPyne DBAnson JMEddy A. Movement patterns in rugby sevens: effects of tournament level, fatigue and substitute players. J Sci Med Sport. 2012;15(3):277282. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Morin JSamozino PEdouard PTomazin K. Sprint fatigue affects the technical ability of force application. Med Sci Sport Exerc. 2011;43(suppl 1):100. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Kerr J. Legacy. London, UK: Constable & Robinson; 2013.

  • 10.

    Saw AMain LGastin P. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50:281291. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Baker DSciences H. Comparison of strength levels between players from within the same club that were selected versus not-selected to play in the grand final of the National Rugby League competition. Strength Cond J. 2016. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Suchomel TNimphius SStone M. The importance of muscular strength in athletic performance. Sport Med. 2016;46(10):14191449. doi:

  • 13.

    Hingham DPyne DAnson JEddy A. Physiological, anthropometric, and performance characteristics of rugby sevens players. Int J Sports Physiol Perform. 2013;8:1927. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gabbett T. Influence of fatigue on tackling ability in rugby league players: role of muscular strength, endurance, and aerobic qualities. PLoS ONE. 2016;11(10):0163161. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Gabbett TKennelly SSheehan Jet al. If overuse injury is a “training load error”, should undertraining be viewed the same way? Br J Sports Med. 2016;50:10171018. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Malone SRoe MDoran DGabbett TCollins K. High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football. J Sci Med Sport. 2017;20:250254. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bickel CCross JBamman M. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sport Exerc. 2011;43(7):11771187. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ronnestad BEgeland WKvamme NRefsnes PKadi FRaastad T. Dissimilar effects of one-and-three-set strength training on strength and muscle mass gains in upper and lower body in untrained subjects. J Strength Cond Res. 2007;21(1):157163. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ross AGill NCronin JMalcata R. The relationship between physical characteristics and match performance in rugby sevens. Eur J Sport Sci. 2015;15(6):565571. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gabbet TUllah SFinch C. Identifying risk factors for contact injury in professional rugby league players—application of a frailty model for recurrent injury. J Sci Med Sport. 2012;15:496504. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Fuller CTaylor ARaftery M. Epidemiology of concussion in men’s elite rugby-7s (Sevens World Series) and rugby-15s (Rugby World Cup, Junior World Championship and Rugby Trophy, Pacific Nations Cup and English Premiership). Br J Sports Med. 2014:16. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wehbe GHartwig TDuncan C. Movement analysis of Australian National League soccer players using global positioning system technology. J Strength Cond Res. 2014;28(3):834842. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Gabbett TGahan C. Repeated high-intensity-effort activity in relation to tries scored and conceded during rugby league match play. Int J Sports Physiol Perform. 2016;11(4):530534.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Goodale TGabbett TStellingwerff TTsai MSheppard J. Relationship between physical qualities and minutes played in international women’s rugby sevens. Int J Sports Physiol Perform. 2016;11:489494. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Haugen TBuchheit M. Sprint running performance monitoring?: methodological and practical considerations key points. Sport Med. 2016;46:641656. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Buchheit MSamozino PGlynn JAet al. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J Sports Sci. 2014;32(20):19061913. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Samozino PRabita GDorel Set al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26:648658. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Suarez-Arrones LNúñez JSáez de Villareal EGálvez JSuarez-Sanchez GMunguía-Izquierdo D. Repeated-high-intensity-running activity and internal training load of elite rugby sevens players during international matches: a comparison between halves. Int J Sports Physiol Perform. 2016;11:495499. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Ross AGill NCronin J. A comparison of the match demands of international and provincial rugby sevens. Int J Sports Physiol Perform. 2015;10(6):786790. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Suarez-Arrones LArenas CLópez GRequena BTerrill OMendez-Villanueva A. Positional differences in match running performance and physical collisions in men rugby sevens. Int J Sports Physiol Perform. 2014;9(2):316323. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bishop DSpencer M. Determinants of repeated-sprint ability in well-trained team-sport athletes and endurance-trained athletes. J Sports Med Phys Fitness. 2004;44(1):17. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gabbett TBenton D. Reactive agility of rugby league players. J Sci Med Sport. 2009;12:212214. PubMed doi:

  • 33.

    Gabbett TKelly JSheppard J. Speed, change of direction speed, and reactive agility of rugby league players. J Strength Cond Res. 2008;22:174181. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gabbet T. Changes in physiological and anthropometric characteristics of rugby league players during a competitive season. J Strength Cond Res. 2005;19(2):400408. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Rumpf MLockie RCronin JJalilvand F. The effect of different sprint training methods on sprint performance over various distances: a brief overview. J Strength Cond Res 2016;30:17671785. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Rabita GDorel SSlawinski Jet al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:583594. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Morin JSlawinski JDorel Set al. Acceleration capability in elite sprinters and ground impulse: push more, brake less? J Biomech. 2015;48:31493154. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Weyand PSternlight DBellizzi MWright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89(5):19911999. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Clark KWeyand P. Are running speeds maximized with simple spring-stance mechanics? J Appl Physiol. 2014;117(6):604615. PubMed doi:

  • 40.

    Cunningham DWest DOwen Net al. Strength and power predictors of sprinting performance in professional rugby players. J Sport Med Phys Fit. 2013;53(2):105111.

    • Search Google Scholar
    • Export Citation
  • 41.

    Baker DNewton R. Comparison of lower body strength, power, acceleration, speed, agility and sprint momentum to describe and compare playing rank among professional rugby league players. J Strength Cond Res. 2008;22(1):153158. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Johnston RGabbett TJenkins DHulin B. Influence of fatigue on tackling technique in rugby league players. J Strength Cond Res. 2008;22(2):625632. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Sáez de Villarreal ESuarez-Arrones LRequena BHaff GGFerrete C. Effects of plyometric and sprint training on physical and technical skill performance in adolescent soccer players. J Strength Cond Res. 2015;29(7):18941903. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Gabbett TWheeler AJ. Predictors of repeated high-intensity-effort ability in rugby league players. Int J Sport Physiol Perform. 2015;10:718724. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Cormie PMcGuigan MNewton RU. Developing maximal neuromuscular power part 2—training considerations for improving maximal power production. Sport Med. 2011;24(1):573580. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Thomasson MComfort P. Occurrence of fatigue during sets of static squat jumps performed at a variety of loads. J Strength Cond Res. 2012;26(3):677683. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Hester GConchola EThiele RDeFreitas J. Power output during a high-volume power-oriented back squat protocol. J Strength Cond Res. 2014;28(10):28012805. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Volek JKraemer WBush Jet al. Creatine supplementation enhances muscular performance during high-intensity resistance exercise. J Am Diet Assoc. 1997;97(7):765770. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Mosey T. Power endurance and strength training methods of the Australian lightweight men’s four. J Aust Strength Cond. 2011;19(1):919.

    • Search Google Scholar
    • Export Citation
  • 50.

    Gonzalo-Skok OTous-Fajardo JArjol-Serrano JLSuarez-Arrones LCasajús JAMendez-Villanueva A. Improvement of repeated-sprint ability and horizontal-jumping performance in elite young basketball players with low-volume repeated-maximal-power training. Int J Sports Physiol Perform. 2016;11:464473. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Apanukul SSuwannathada S. The effects of combined weight and pneumatic training to enhance power endurance in tennis players. J Exerc Physiol. 2015;18(2):817.

    • Search Google Scholar
    • Export Citation
  • 52.

    Gabbett TDomrow N. Relationships between training load, injury, and fitness in sub-elite collision sport athletes. J Sports Sci. 2007;25(13):15071519. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Gabbett T. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50:273280. PubMed doi:

  • 54.

    Gabbett TUllah S. Relationship between running loads and soft-tissue injury in elite team sport athletes. J Strength Cond Res. 2012;26(4):953960. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Gabbett T. Reductions in pre-season training loads reduce training injury rates in rugby league players. Br J Sports Med. 2004;38:743749. PubMed doi:

  • 56.

    Hulin BGabbett TCaputi PLawson DSampson J. The acute:chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med. 2016;50:231236. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Soligard TSchwellnus MAlonso Jet al. How much is too much? (part 1): International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):10301041. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Schwellnus MSoligard TAlonso Jet al. How much is too much? (part 2): International Olympic Committee consensus statement on load in sport and risk of illness. Br J Sports Med. 2016;50(17):10431052. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Windt JGabbett TFerris DKhan K. Training load-injury paradox: is greater preseason participation associated with lower in-season injury risk in elite rugby league players? Br J Sports Med. 2017;51(8):645650. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Murray NGabbett TTownshend AHulin BMcLellan C. Individual and combined effects of acute and chronic running loads on injury risk in elite Australian footballers. Scand J Med Sci Sports. 2017;27:990998. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Blanch PGabbett T. Has the athlete trained enough to return to play safely?: the acute:chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. Br J Sports Med. 2016;50:471475. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Duhig SShield AOpar DGabbett TFerguson CWilliams M. Effect of high-speed running on hamstring strain injury risk. Br J Sports Med. 2016;50:15361540. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Furlan NWaldron MShorter Ket al. Running-intensity fluctuations in elite rugby sevens performance. Int J Sports Physiol Perform. 2015;10(6):802807. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Kristensen GOvan den Tillaar REttema GJ. Velocity specificity in early-phase sprint training. J Strength Cond Res. 2006;20(4):833837. PubMed

  • 65.

    Mujika IPadilla S. Scientific bases for precompetition tapering strategies. Med Sci Sports Exerc. 2003;35(7):11821187. PubMed doi:

  • 66.

    Bosquet LMontpetit JArvisais DMujika I. Effects of tapering on performance: a meta-analysis. Med Sci Sports Exerc. 2007;39(8):13581365. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Kraemer WHooper DKupchak Bet al. The effects of a roundtrip trans-American jet travel on physiological stress, neuromuscular performance and recovery. J Appl Physiol. 2016;121:438448. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    West DCook CStokes Ket al. Profiling the time-course changes in neuromuscular function and muscle damage over two consecutive tournament stages in elite rugby sevens players. J Sci Med Sport. 2014;17(6):688692. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Trappe SCostill DThomas R. Effect of swim taper on whole muscle and single muscle fiber contractile properties. Med Sci Sports Exerc. 2000;32(12):4856. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Fessi MZarrouk NDi Salvo VFiletti CBarker AMoalla W. Effects of tapering on physical match activities in professional soccer players. J Sports Sci. 2016;34:21892194. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Ferrauti AOh SDroscher Set al. Effects of preloading exercise intensity on physical and cognitive performance in soccer. Paper presented at: Annual Congress of the European College of Sport Science ECSS; July 6–9 2011; Liverpool UK.

    • Search Google Scholar
    • Export Citation
  • 72.

    Fuller CTaylor ARaftery M. Should player fatigue be the focus of injury prevention strategies for international rugby sevens tournaments? Br J Sports Med. 2016;50(11):682687. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Sawka MBurke LEichner EMaughan RMontain SStachenfeld N. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sport Exerc. 2007;39(2):377390. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Ihsan MWatson GAbbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sport Med. 2016;46:10951109. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Broatch JPetersen ABishop D. Postexercise cold water immersion benefits are not greater than the placebo effect. Med Sci Sports Exerc. 2014;46(11):21392147. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Poppendieck WFaude OWegmann MMeyer T. Cooling and performance recovery of trained athletes: a meta-analytical review. Int J Sports Physiol Perform. 2013;8(3):227242. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Poppendieck WWegmann MFerrauti A. Massage and performance recovery: a meta-analytical review. Sport Med. 2016;46(2):183204. doi:

  • 78.

    Hill JHowatson Gvan Someren KLeeder JPedlar C. Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. Br J Sports Med. 2013;48(18):17. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Azad FHolmberg ESperlich B. Is there evidence that runners can benefit from wearing compression clothing? Sport Med. 2016;46:19391952. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Thomas DErdman KBurke L. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501528. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Roberts SStokes KTrewartha GDoyle JHogben PThompson D. Effects of carbohydrate and caffeine ingestion on performance during a rugby union simulation protocol. J Sports Sci. 2010;28(8):833842. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Dziedzic CHigham D. Performance nutrition guidelines for international rugby sevens tournaments. Int J Sport Nutirion Exerc Metab. 2014;24(3):305314. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Killer SBlannin AJeukendrup A. No evidence of dehydration with moderate daily coffee intake: a counterbalanced cross-over study in a free-living population. PLoS ONE. 2014;9:e84154. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Hilditch CDorrian JSiobhan B. Time to wake up: reactive countermeasures to sleep inertia. Ind Health. 2016;54:528541. PubMed doi:

  • 85.

    Waterhouse JAtkinson GEdwards BReilly T. The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation. J Sports Sci. 2007;25(14):15571566. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 192 192 54
Full Text Views 13 13 3
PDF Downloads 6 6 0
Altmetric Badge
PubMed
Google Scholar
Cited By