Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Context: While a number of studies have researched road-cycling performance, few have attempted to investigate the physiological response in field conditions. Purpose: To describe the physiological and performance profile of an uphill time trial (TT) frequently used in cycling competitions. Methods: Fourteen elite road cyclists (mean ± SD age 25 ± 6 y, height 174 ± 4.2 cm, body mass 64.4 ± 6.1 kg, fat mass 7.48% ± 2.82%) performed a graded exercise test to exhaustion to determine maximal parameters. They then completed a field-based uphill TT in a 9.2-km first-category mountain pass with a 7.1% slope. Oxygen uptake (VO2), power output, heart rate (HR), lactate concentration, and perceived-exertion variables were measured throughout the field-based test. Results: During the uphill TT, mean power output and velocity were 302 ± 7 W (4.2 ± 0.1 W/kg) and 18.7 ± 1.6 km/h, respectively. Mean VO2 and HR were 61.6 ± 2.0 mL · kg−1 · min−1 and 178 ± 2 beats/min, respectively. Values were significantly affected by the 1st, 2nd, 6th, and final kilometers (P < .05). Lactate concentration and perceived exertion were 10.87 ± 1.12 mmol/L and 19.1 ± 0.1, respectively, at the end of the test, being significantly different from baseline measures. Conclusion: The studied uphill TT is performed at 90% of maximum HR and VO2 and 70% of maximum power output. To the authors’ knowledge, this is the first study assessing cardiorespiratory parameters combined with measures of performance, perceived exertion, and biochemical variables during a field-based uphill TT in elite cyclists.

The authors are with the LFE Research Group, Dept of Health and Human Performance, Universidad Politécnica de Madrid, Madrid, Spain.

Peinado (anabelen.peinado@upm.es) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Padilla SMujika ISantisteban JImpellizzeri FMGoiriena JJ. Exercise intensity and load during uphill cycling in professional 3-week races. Eur J Appl Physiol. 2008;102(4):431438. PubMed doi:10.1007/s00421-007-0602-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lucia AHoyos JChicharro JL. Physiology of professional road cycling. Sports Med. 2001;31(5):325337. PubMed doi:10.2165/00007256-200131050-00004

  • 3.

    Mujika IPadilla S. Physiological and performance characteristics of male professional road cyclists. Sports Med. 2001;31(7):479487. PubMed doi:10.2165/00007256-200131070-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Padilla SMujika IOrbañanos JSantisteban JAngulo FGoiriena JJ. Exercise intensity and load during mass-start stage races in professional road cycling. Med Sci Sports Exerc. 2001;33(5):796802. PubMed doi:10.1097/00005768-200105000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Padilla SMujika IOrbañanos JAngulo F. Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc. 2000;32(4):850856. PubMed doi:10.1097/00005768-200004000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bertucci WMBetik ACDuc SGrappe F. Gross efficiency and cycling economy are higher in the field as compared with on an axiom stationary ergometer. J Appl Biomech. 2012;28(6):636644. PubMed doi:10.1123/jab.28.6.636

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Harnish CKing DSwensen T. Effect of cycling position on oxygen uptake and preferred cadence in trained cyclists during hill climbing at various power outputs. Eur J Appl Physiol. 2007;99(4):387391. PubMed doi:10.1007/s00421-006-0358-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Nimmerichter APrinz BHaselsberger KNovak NSimon DHopker JG. Gross efficiency during flat and uphill cycling in field conditions. Int J Sports Physiol Perform. 2015;10(7):830834. PubMed doi:10.1123/ijspp.2014-0373

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Vogt SHeinrich LSchumacher YOet al. Power output during stage racing in professional road cycling. Med Sci Sports Exerc. 2006;38(1):147151. PubMed doi:10.1249/01.mss.0000183196.63081.6a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Millet GPTornche CGrappe F. Accuracy of indirect estimation of power output from uphill performance in cycling. Int J Sports Physiol Perform. 2014;9(5):777782. PubMed doi:10.1123/ijspp.2013-0320

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nimmerichter AWilliams CEston R. Evaluation of a field test to assess performance in elite cyclists. Int J Sports Med. 2010;31(3):160166. PubMed doi:10.1055/s-0029-1243222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bossi AHLima PPerrout de Lima JHopker J. Laboratory predictors of uphill cycling performance in trained cyclists. J Sports Sci. 2017;35:13641371. PubMed doi:10.1080/02640414.2016.1182199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Atkinson GDavison RJeukendrup APassfield L. Science and cycling: current knowledge and future directions for research. J Sports Sci. 2003;21:767787. PubMed doi:10.1080/0264041031000102097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Vogt SSchumacher YORoecker Ket al. Power output during the Tour de France. Int J Sports Med. 2007;28:756761. PubMed doi:10.1055/s-2007-964982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Vogt SRoecker KSchumacher YOet al. Cadence-power relationship during decisive mountain ascents at the Tour de France. Int J Sports Med. 2008;29:244250. PubMed doi:10.1055/s-2007-965353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Smekal Gvon Duvillard SPHörmandinger Met al. Physiological demands of simulated off-road cycling competition. J Sports Sci Med. 2015;14(4):799810. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lucia AHoyos JPerez MSantalla AEarnest CPChicharro JL. Which laboratory variable is related with time trial performance time in the Tour de France? Br J Sports Med. 2004;38(5):636640. PubMed doi:10.1136/bjsm.2003.008490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lucia ARabadan MHoyos Jet al. Frequency of the VO2max plateau phenomenon in world-class cyclists. Int J Sports Med. 2006;27(12):984992. PubMed doi:10.1055/s-2006-923833

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wasserman KHansen JESue DYet al. Principles of Exercise Testing and Interpretation. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012.

    • Search Google Scholar
    • Export Citation
  • 20.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed doi:10.1249/00005768-198205000-00012

  • 21.

    Nurmekivi AKaru TPihl EJurimae TLemberg H. Blood lactate recovery and perceived readiness to start a new run in middle-distance runners during interval training. Percept Mot Skills. 2001;93(2):397404. PubMed doi:10.2466/pms.2001.93.2.397

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Atkinson GPeacock OPassfield L. Variable versus constant power strategies during cycling time-trials: prediction of time savings using an up-to-date mathematical model. J Sports Sci. 2007;25:10011009. PubMed doi:10.1080/02640410600944709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Enders HVon Tscharner VNigg BM. Neuromuscular strategies during cycling at different muscular demands. Med Sci Sports Exerc. 2015;47:14501459. PubMed doi:10.1249/MSS.0000000000000564

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mognoni Pdi Prampero PE. Gear, inertial work and road slopes as determinants of biomechanics in cycling. Eur J Appl Physiol. 2003;90:372376. PubMed doi:10.1007/s00421-003-0948-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sassi ARampinini EMartin DTMorelli A. Effects of gradient and speed on freely chosen cadence: the key role of crank inertial load. J Biomech. 2009;42:171177. PubMed doi:10.1016/j.jbiomech.2008.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:628634. PubMed

  • 27.

    Atkinson GPeacock OSt Clair Gibson ATucker R. Distribution of power output during cycling: impact and mechanisms. Sports Med. 2007;37:647667. PubMed doi:10.2165/00007256-200737080-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Smits BLPolman RCOtten BPepping GJHettinga FJ. Cycling in the absence of task-related feedback: effects on pacing and performance. Front Physiol. 2016;7:348. PubMed doi:10.3389/fphys.2016.00348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 93 93 29
Full Text Views 5 5 1
PDF Downloads 3 3 1
Altmetric Badge
PubMed
Google Scholar