Physiological Profile of an Uphill Time Trial in Elite Cyclists

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Ana B. Peinado
Search for other papers by Ana B. Peinado in
Current site
Google Scholar
PubMed
Close
,
Nuria Romero-Parra
Search for other papers by Nuria Romero-Parra in
Current site
Google Scholar
PubMed
Close
,
Miguel A. Rojo-Tirado
Search for other papers by Miguel A. Rojo-Tirado in
Current site
Google Scholar
PubMed
Close
,
Rocío Cupeiro
Search for other papers by Rocío Cupeiro in
Current site
Google Scholar
PubMed
Close
,
Javier Butragueño
Search for other papers by Javier Butragueño in
Current site
Google Scholar
PubMed
Close
,
Eliane A. Castro
Search for other papers by Eliane A. Castro in
Current site
Google Scholar
PubMed
Close
,
Francisco J. Calderón
Search for other papers by Francisco J. Calderón in
Current site
Google Scholar
PubMed
Close
, and
Pedro J. Benito
Search for other papers by Pedro J. Benito in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: While a number of studies have researched road-cycling performance, few have attempted to investigate the physiological response in field conditions. Purpose: To describe the physiological and performance profile of an uphill time trial (TT) frequently used in cycling competitions. Methods: Fourteen elite road cyclists (mean ± SD age 25 ± 6 y, height 174 ± 4.2 cm, body mass 64.4 ± 6.1 kg, fat mass 7.48% ± 2.82%) performed a graded exercise test to exhaustion to determine maximal parameters. They then completed a field-based uphill TT in a 9.2-km first-category mountain pass with a 7.1% slope. Oxygen uptake (VO2), power output, heart rate (HR), lactate concentration, and perceived-exertion variables were measured throughout the field-based test. Results: During the uphill TT, mean power output and velocity were 302 ± 7 W (4.2 ± 0.1 W/kg) and 18.7 ± 1.6 km/h, respectively. Mean VO2 and HR were 61.6 ± 2.0 mL · kg−1 · min−1 and 178 ± 2 beats/min, respectively. Values were significantly affected by the 1st, 2nd, 6th, and final kilometers (P < .05). Lactate concentration and perceived exertion were 10.87 ± 1.12 mmol/L and 19.1 ± 0.1, respectively, at the end of the test, being significantly different from baseline measures. Conclusion: The studied uphill TT is performed at 90% of maximum HR and VO2 and 70% of maximum power output. To the authors’ knowledge, this is the first study assessing cardiorespiratory parameters combined with measures of performance, perceived exertion, and biochemical variables during a field-based uphill TT in elite cyclists.

The authors are with the LFE Research Group, Dept of Health and Human Performance, Universidad Politécnica de Madrid, Madrid, Spain.

Peinado (anabelen.peinado@upm.es) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Padilla S, Mujika I, Santisteban J, Impellizzeri FM, Goiriena JJ. Exercise intensity and load during uphill cycling in professional 3-week races. Eur J Appl Physiol. 2008;102(4):431438. PubMed doi:10.1007/s00421-007-0602-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lucia A, Hoyos J, Chicharro JL. Physiology of professional road cycling. Sports Med. 2001;31(5):325337. PubMed doi:10.2165/00007256-200131050-00004

  • 3.

    Mujika I, Padilla S. Physiological and performance characteristics of male professional road cyclists. Sports Med. 2001;31(7):479487. PubMed doi:10.2165/00007256-200131070-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Padilla S, Mujika I, Orbañanos J, Santisteban J, Angulo F, Goiriena JJ. Exercise intensity and load during mass-start stage races in professional road cycling. Med Sci Sports Exerc. 2001;33(5):796802. PubMed doi:10.1097/00005768-200105000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Padilla S, Mujika I, Orbañanos J, Angulo F. Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc. 2000;32(4):850856. PubMed doi:10.1097/00005768-200004000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bertucci WM, Betik AC, Duc S, Grappe F. Gross efficiency and cycling economy are higher in the field as compared with on an axiom stationary ergometer. J Appl Biomech. 2012;28(6):636644. PubMed doi:10.1123/jab.28.6.636

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Harnish C, King D, Swensen T. Effect of cycling position on oxygen uptake and preferred cadence in trained cyclists during hill climbing at various power outputs. Eur J Appl Physiol. 2007;99(4):387391. PubMed doi:10.1007/s00421-006-0358-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Nimmerichter A, Prinz B, Haselsberger K, Novak N, Simon D, Hopker JG. Gross efficiency during flat and uphill cycling in field conditions. Int J Sports Physiol Perform. 2015;10(7):830834. PubMed doi:10.1123/ijspp.2014-0373

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Vogt S, Heinrich L, Schumacher YO, et al. Power output during stage racing in professional road cycling. Med Sci Sports Exerc. 2006;38(1):147151. PubMed doi:10.1249/01.mss.0000183196.63081.6a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Millet GP, Tornche C, Grappe F. Accuracy of indirect estimation of power output from uphill performance in cycling. Int J Sports Physiol Perform. 2014;9(5):777782. PubMed doi:10.1123/ijspp.2013-0320

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nimmerichter A, Williams C, Eston R. Evaluation of a field test to assess performance in elite cyclists. Int J Sports Med. 2010;31(3):160166. PubMed doi:10.1055/s-0029-1243222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bossi AH, Lima P, Perrout de Lima J, Hopker J. Laboratory predictors of uphill cycling performance in trained cyclists. J Sports Sci. 2017;35:13641371. PubMed doi:10.1080/02640414.2016.1182199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Atkinson G, Davison R, Jeukendrup A, Passfield L. Science and cycling: current knowledge and future directions for research. J Sports Sci. 2003;21:767787. PubMed doi:10.1080/0264041031000102097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Vogt S, Schumacher YO, Roecker K, et al. Power output during the Tour de France. Int J Sports Med. 2007;28:756761. PubMed doi:10.1055/s-2007-964982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Vogt S, Roecker K, Schumacher YO, et al. Cadence-power relationship during decisive mountain ascents at the Tour de France. Int J Sports Med. 2008;29:244250. PubMed doi:10.1055/s-2007-965353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Smekal G, von Duvillard SP, Hörmandinger M, et al. Physiological demands of simulated off-road cycling competition. J Sports Sci Med. 2015;14(4):799810. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lucia A, Hoyos J, Perez M, Santalla A, Earnest CP, Chicharro JL. Which laboratory variable is related with time trial performance time in the Tour de France? Br J Sports Med. 2004;38(5):636640. PubMed doi:10.1136/bjsm.2003.008490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lucia A, Rabadan M, Hoyos J, et al. Frequency of the VO2max plateau phenomenon in world-class cyclists. Int J Sports Med. 2006;27(12):984992. PubMed doi:10.1055/s-2006-923833

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wasserman K, Hansen JE, Sue DY, et al. Principles of Exercise Testing and Interpretation. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012.

    • Search Google Scholar
    • Export Citation
  • 20.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed doi:10.1249/00005768-198205000-00012

  • 21.

    Nurmekivi A, Karu T, Pihl E, Jurimae T, Lemberg H. Blood lactate recovery and perceived readiness to start a new run in middle-distance runners during interval training. Percept Mot Skills. 2001;93(2):397404. PubMed doi:10.2466/pms.2001.93.2.397

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Atkinson G, Peacock O, Passfield L. Variable versus constant power strategies during cycling time-trials: prediction of time savings using an up-to-date mathematical model. J Sports Sci. 2007;25:10011009. PubMed doi:10.1080/02640410600944709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Enders H, Von Tscharner V, Nigg BM. Neuromuscular strategies during cycling at different muscular demands. Med Sci Sports Exerc. 2015;47:14501459. PubMed doi:10.1249/MSS.0000000000000564

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mognoni P, di Prampero PE. Gear, inertial work and road slopes as determinants of biomechanics in cycling. Eur J Appl Physiol. 2003;90:372376. PubMed doi:10.1007/s00421-003-0948-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sassi A, Rampinini E, Martin DT, Morelli A. Effects of gradient and speed on freely chosen cadence: the key role of crank inertial load. J Biomech. 2009;42:171177. PubMed doi:10.1016/j.jbiomech.2008.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:628634. PubMed

  • 27.

    Atkinson G, Peacock O, St Clair Gibson A, Tucker R. Distribution of power output during cycling: impact and mechanisms. Sports Med. 2007;37:647667. PubMed doi:10.2165/00007256-200737080-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Smits BL, Polman RC, Otten B, Pepping GJ, Hettinga FJ. Cycling in the absence of task-related feedback: effects on pacing and performance. Front Physiol. 2016;7:348. PubMed doi:10.3389/fphys.2016.00348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2220 841 112
Full Text Views 48 6 0
PDF Downloads 55 12 0